hãy chứng tỏ trong 5 STN liên tiếp có 1 số chia hết cho 5
nhanh nha mik sắp nộp rồi
cmr
a)trong 2 stn liên tiếp có 1 số chia hết cho 2
b)trong 3 stn liên tiếp có 1 số chia hết cho 3
nhanh giùm nha mai nộp rùi hu hu
a) Gọi các số tự nhiên đó là k, k + 1
+Nếu k chia hết cho 2 thì trong hai số đó k chia hết cho 2.
+Nếu k chia 2 dư 1 thì trong hai số đó k + 1 chia hết cho 2.
b) Gọi các số tự nhiên đó là k, k + 1, k + 2
+Nếu k chia hết cho 3 thì trong ba số đó k chia hết chi 3.
+Nếu k chia 3 dư 1 thì trong ba số đó k + 2 chia hết cho 3.
+Nếu k chia 3 dư 2 thì trong ba số đó k + 1 chia hết cho 3.
a, Hai số tự nhiên liên tiếp là số thứ nhất có thể là số chẵn ,số thứ hai là số lẻ hoặc số thứ nhất là số lẻ, số thứ hai là số chẵn
b, Trung bình cộng của ba số tự nhiên liên tiếp là chia cho 3 mà kết quả đó cũng là số thứ hai
a) Gọi 2 stn liên tiếp là n ; n+1 ( n E N* )
Nếu n chia hết cko 2 thì cần có các điều kiện:
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cko 2.
HÃY CHỨNG MINH RẰNG TRONG BA STN LIÊN TIẾP CÓ 1 SỐ CHIA HẾT CHO 3
AI KB VỚI MIK ĐI MIK HẾT LƯỢT RÙI
Ba số tự nhiên liên tiếp: n;(n+1);(n+2) (1)
Giả sử: n là một số tự nhiên chia hết cho 3 => n =3k
thay n= 3k vào (1) : 3k ;(3k +1); (3k+2) -----có 3k chia hết cho 3
(n+1) ; (n+2); (n+3) (2)
thay n = 3k vào (2) : (3k+1); (3k +2); (3k +3) ------ có 3k + 3 chia hết cho 3
.......
Gọi 3 STN liên tiếp là a,a+1,a+2
Nếu a chia hết cho 3 thì bài toán được CM
Nếu a=3k+1(k là STN)=> a+2=3k+3 chia hết cho 3
Nếu a=3k+2(k là STN)=> a+1=3k+3 chia hết cho 3
Vậy
Hãy chứng tỏ rằng:
a, trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
b, trong 6 số tự nhiên liên tiếp có 1 số chia hết cho 6
cần gấp nha, thanks mn
a/ gọi 5 số tự nhiên liên tiếp là n; n+1; n+2; n+3; n+4
+ Nếu n chia hết cho 5 thì phát biểu trên là đúng
+ Nếu n chia 5 dư 1 thì n có dạng n=5k+1 => n+4=5k+1+4=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2=5k+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+4=5k+4+1=5(k+1) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
b/ Làm tương tự
chứng tỏ ràng trong 4 stn liên tiếp có 1 số chia hết cho 4
Chứng tỏ rằng trong 3 STN liên tiếp luôn có 1 số chia hết cho 3
gọi 3 STN đó là a,a+1,a+2
nếu a=3k+1
thì a+1=3k+2
và a+2=3k+3 chia hết cho 3
vậy trong 3 STN liên tiếp có 1 số chia hết cho 3
có nhu cầu thì kết bạn
chứng tỏ rằng trong 2 STN liên tiếp luôn có 1 số chia hết cho 2
Gọi 2 số là : a;a+1
+ Nếu a=2k => ĐPCM (1)
+ Nếu a=2k+1 thì a+1=2k+1+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2) => trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chẵn mà số chẵn lại chia hết cho 2 nên 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
hai số tự nhiên liên tiếp sẽ có một số chẵn và một số lẻ .mà số chẵn là số chia hết cho 2 vậy trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
1.Chứng minh rằn 3 STN liên tiếp thì sẽ có một số chia hết cho 3
2.Chứng minh rằng 4 STN liên tiếp thì có một số chia hết cho 4
3. Chứng minh rằng Nếu hai STN liên tiếp chùng chia cho 5 và có cùng số dư thì thì hiệu của chúng chia hết cho 5
Chú ý là chữ số liên tiếp một chữ chia hết cho 3 nha chứ ko phải là tổng chia hết cho 3 (áp dụng với bài 4 nữa)
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
chứng tỏ rằng trong 4 stn liên tiếp có một số chia hết cho 4
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
chứng tỏ rằng
a) trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) trong ba STN liên tiếp , có một số chia hết cho 3