Cho đường tròn (O; R) đường kính AB, kẻ đường thẳng d ⊥ BA tại C (C nằm giữa A và B). Lấy điểm M nằm bên ngoài đường tròn và nằm trên đường thẳng d. Gọi D là giao điểm của MA và (O); E là giao điểm của MB và (O). Tiếp tuyến của (O) tại D cắt MC tại I; H là giao điểm của AE với MC.
a) Chứng minh rằng: BCHE là tứ giác nội tiếp và AH.AE = AB.AC
b) Chứng minh rằng: ∆DHI là tam giác cân