Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
gấukoala
Xem chi tiết
phạm ngọc thái
Xem chi tiết
Nhu Y
16 tháng 9 2018 lúc 14:31

minh moi lop 6

gấukoala
Xem chi tiết
Nguyễn Trâm Anh
Xem chi tiết
Trần Thị Minh Thư
Xem chi tiết
Trần Thị Minh Thư
Xem chi tiết
Trần Thị Hoa
27 tháng 11 2015 lúc 21:30

Để A lớn nhất thì |x-2013| phaair nhỏ nhất mà giá trị nhỏ nhất của |x-2013| là 0

=> giá  trị lớn nhất của A là 2014 (khi đó x=2013)

thái thanh oanh
Xem chi tiết
Đặng Thị Trà My
Xem chi tiết
Nguyễn Nhật Minh
9 tháng 2 2019 lúc 10:11

Bổ đề (I): Cho 2 số thực ab thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html

Quay trở lại giải bài toán ban đầu.

Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:

\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)

Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)

Thử lại thấy thoả mãn.

Vậy x = 2014, y = 2015.

Emma Granger
9 tháng 2 2019 lúc 10:07

\(\left(x;y\right)\in\left\{\left(2014;2015\right)\right\}\)

Đặng Tú Phương
9 tháng 2 2019 lúc 13:01

\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)

\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|+\left|y-2015\right|=3\)

Ta có +) \(\left|x-2013\right|+\left|2016-x\right|\ge\left|x-2013+2016-x\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2013\right)\left(2016-x\right)\ge0\Leftrightarrow2013\le x\le2016\)

+) \(\left|x-2014\right|\ge0\).Dấu "=" xảy ra  \(\Leftrightarrow x-2014=0\Leftrightarrow x=2014\)

+) \(\left|y-2015\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y-2015=0\Leftrightarrow y=2015\)

\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\ge3\)

\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\\x=2014\\y=2015\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\end{cases}}}\)

small
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 15:21

\(A=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)\)

\(=1-3ab+ab=1-2ab\)

\(=1-2a\left(1-a\right)=2a^2-2a+1\)

\(=\dfrac{1}{2}\left(4a^2-4a+1\right)+\dfrac{1}{2}=\dfrac{1}{2}\left(2a-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

\(\Rightarrow A_{min}=\dfrac{1}{2}\) khi \(a=b=\dfrac{1}{2}\)