Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Công HUY
Xem chi tiết
Sooya
17 tháng 12 2017 lúc 19:57

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

Đinh Công HUY
17 tháng 12 2017 lúc 19:57

ai trả lời giúp mình mình k cho

Không Tên
17 tháng 12 2017 lúc 19:59

BÀI 1:

S = 2 + 22 + 23 + 24 + ..... + 210

= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)

= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)

= 3(2 + 23 + .... + 27 + 29)    \(⋮3\)

BÀI 2:

1 + 3 + 32 + 33 + ....... + 399

= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)

= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)

= 40(1 + 34 + ..... + 396)     \(⋮40\)

hanh Ha
Xem chi tiết
Lee Vincent
Xem chi tiết
Thanh Tùng DZ
22 tháng 10 2017 lúc 8:49

đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

A = 3 . 4 + 33 . 4 + ... + 399 . 4

A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4

Tung Ngo Sy
Xem chi tiết
nguyen khac hiep
21 tháng 1 2021 lúc 21:10

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

Khách vãng lai đã xóa
nguyen khac hiep
5 tháng 2 2021 lúc 21:44

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

Khách vãng lai đã xóa
Mạc Hy
Xem chi tiết

Đặt A = 31 + 32 + 33 + 34 + ... + 3100

= ( 31 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

=3( 1+3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

= 4( 3+ 33 + ... + 399 ) chia hết cho 4

=> đpcm

Khách vãng lai đã xóa
.
27 tháng 10 2019 lúc 21:33

Gọi tổng 3+32+33+...+3100 là A

Ta có :A=3+32+33+...+3100

             =(3+32)+(33+34)+...+(399+3100)

             =3(1+3)+33.(1+3)+...+399.(1+3)

            =3.4+33.4+...+399.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+399.4\(⋮\)4

hay A \(⋮\)4

Vậy A\(⋮\)4

Khách vãng lai đã xóa
Thanh Hiền
Xem chi tiết
Trần Lương Tuyết Trinh
23 tháng 10 2015 lúc 11:10

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=3^1.4+3^3.4+3^5.4+...+3^{99}.4\)

\(=4.\left(3^1+3^3+3^5+...+3^{99}\right)\)

Vậy phép tính trên chia hết cho 4

Nguyen Viet Bac
Xem chi tiết
Kinomoto Sakura
1 tháng 11 2015 lúc 8:14

C = 3 + 32 + 33 + 34 + .... + 3100

C = (3 + 32 + 33 + 34) + ....... + (397 + 398 + 399 +3100)

C = 3(1 + 3 + 32 + 33) + ... + 397 (1 + 3 + 32 + 33)

C = 3. 40 + ... + 397 . 40

C = 40(3 + ... + 397) chia hết cho 40

Nguyễn Ngọc Thắng
13 tháng 5 2018 lúc 21:28

 C=3+3^2+3^3+....+3^100                                                                                                                                                                                 C=(3+3^2+3^3+3^4)+........+(3^97+3^98+3^99+3^100)                                                                                                                                  C=3(1+3+3^2+3^3)+..........+3^97( 1+3+3^2+3^3)                                                                                                                                           C=3*40+.......+3^97*40                                                                                                                                                                                   C=40(3+.....+3^97) chia hết cho40                                                                                                                                                             nhớ l i k e cho mình nha          

Bùi Thế Minh
9 tháng 4 2019 lúc 10:24

C=3+3^2+3^3+...+3^100

C=( 3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)

C=3.(1+3+3^2+3^3)+3^5.(1+3+3^2+3^3)+...+3^97.(1+3+3^2+3^3)

C=3.40+3^5.40+...+3^97.40

C=40.( 3+3^5+...+3^97) chia hết cho 40

L I K E cho mình nhé

đỗ tấn thành huy
Xem chi tiết
Tho ngo van
9 tháng 12 2017 lúc 18:30

1+3+3^2+...+3^99\(⋮\)40

(1+3+3^2+3^3)+...+(3^96+3^97+3^98+3^99)

1x(1+3+3^2+3^3)+...+3^96x(1+3+3^2+3^3)

1x40+...+3^96x40

=40x(1+...+3^96)\(⋮\)40

Vậy 1+3+3^2+...+3^99\(⋮\)40

Ngô Thị Kim Chi
9 tháng 12 2017 lúc 18:25

Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12 
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440 
hay 2C = 531440 => C = 265720 =40*6643

Đỗ Việt Nhật
9 tháng 12 2017 lúc 18:28

Ta co:1+3+3^2+...+3^99=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^96+3^97+3^98+3^99)

                                      =40+3^4.40+...+3^96.40

                                      =40(1+3^4+...+3^96)

Vay bieu thuc tren chia het cho 40

kb nhe

Koshiba Kiri
Xem chi tiết