Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Dũng
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
29 tháng 1 2016 lúc 16:12

Ai trả lời hay mình sẽ tich nhiều

HOANGTRUNGKIEN
29 tháng 1 2016 lúc 16:21

fzdyxchgbvrhdfnckudjkzjxrfeudfcchfnvrjfh urkdjfhbv   rujfv  vc bffvn c,kujdfhc n

Kiều Linh Phù Thủy
29 tháng 1 2016 lúc 17:21

muốn quá nhưng mình mói học lớp 6 thôi

Nguyễn Xuân Dũng
Xem chi tiết
Songoku Sky Fc11
29 tháng 7 2017 lúc 10:03

CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học

Bùi Nhật Vy
Xem chi tiết
ST
18 tháng 7 2018 lúc 10:05

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

nguyễn văn nhật nam
Xem chi tiết
nguyễn bảo ngọc
Xem chi tiết
Akai Haruma
21 tháng 10 lúc 23:00

Lời giải:

$(a-b)^2=(b-c)^2$

$\Rightarrow (a-b)^2-(b-c)^2=0$

$\Rightarrow (a-b-b+c)(a-b+b-c)=0$

$\Rightarrow (a-2b+c)(a-c)=0$

$\Rightarrow a=c$ hoặc $a+c=2b$

Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé. 

Bùi Đức Mạnh
Xem chi tiết
zZz Cool Kid_new zZz
22 tháng 1 2019 lúc 19:01

Giả sử c không phải là cạnh nhỏ nhất,chẳng hạn \(a\le c\).

Khi đó:\(a^2\le c^2\)và \(b^2\le\left(a+c\right)^2\le4c^2\)

\(\Rightarrow a^2+b^2< 5c^2\)(trái với giả thiết)

\(\Rightarrow\)điều giả sử sai

\(\Rightarrow\)điều ngược lại đúng,tức là c  là độ dài cạnh nhỏ nhất của tam giác.

Bùi Đức Mạnh
9 tháng 2 2019 lúc 21:07

cảm ơn nhe bn

Doãn Thị Thu Trang
Xem chi tiết
Lê Thị Như Quỳnh
Xem chi tiết
Lê Nhật Khôi
11 tháng 7 2018 lúc 10:20

Này là toán lớp 7

Lê Thị Như Quỳnh
11 tháng 7 2018 lúc 12:27

Lớp 10 đấy