Tính: 1.2.3+2.3.4+...+99.100.101
tính tổng: A= 1.2.3+2.3.4+3.4.5+...+99.100.101
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
Tính nhanh:S=2/1.2.3+2/2.3.4+...+2/99.100.101
Tính: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/99.100.101
Đặt A=1/1.2.3+1/2.3.4+...+1/99.100.101
2A=2/1.2.3+2/2.3.4+...2/99.100.101
2A=3-1/1.2.3+4-2/2.3.4+...+101-99/99.100.101
2A=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+101/99.100.101-99/99.100.101
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/99.100-1/100.101
2A=1/2-1/10100
Tính nhanh: S = 2/ 1.2.3 + 2/ 2.3.4 + 2/3.4.5 + ....... + 2/ 99.100.101
Tính : \(A=1.2.3+2.3.4+3.4.5+.....+99.100.101\)
A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101
4A = 4.(1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101)
= 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 99.100.101.(102-98)
= 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + 3.4.5.6 - 3.4.5.6 + ... + 98.99.100.101 - 98.99.100.101 + 99.100.101.102
4A = 99.100.101.102
A = 99.100.101.102 : 4
A = 25497450
Tính nhanh: S = 2/1.2.3 + 2/2.3.4 + 2/3.4.5+.........+ 2/99.100.101
A= 1.2.3+2.3.4+.......+99.100.101
Kết quả là : \(\frac{5049}{20200}\)
A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.4 + ... + 99.100.101.4
=> 4A = 1.2.3.4 + 2.3.4.(5 - 1) + ... + 99.100.101.(102 - 98)
=> 4A - 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> A = 99.100.101.102 :4
=> A = 25497450
\(=\frac{5049}{20200}\)
Code : Breacker
1.2.3+2.3.4+3.4.5+..+99.100.101
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
1.2.3+2.3.4+3.4.5+.........+99.100.101
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450