Cho a,b không âm. CMR: (a+b)(ab+1)>= 4ab
cmr: 4a2 b2 + 4ab + 1 luôn không âm với mọi số thực a; b
4a2+b2+4ab+1
=(2a+b)2+1
Do\(\left(2a+b\right)^2\ge0\Rightarrow\left(2a+b\right)^2+1>0\)
=>(2a+b)2+1 luôn không âm với mọi số thực a;b
hay 4a2+b2+4ab+1 luôn không âm với mọi số thực a;b(ĐPCM)
cho K=ab+4ab -4bc với a,b,c là các số không âm thỏa mãn a+b+2c=1
a) Chứng minh K ≥ - \(\dfrac{1}{2}\)
b) Tìm giá trị lớn nhất của K
Với a; b không âm, chứng minh \(a+b\ge\frac{4ab}{1+ab}\)
\(\text{bđt}\Leftrightarrow\left(a+b\right)\left(1+ab\right)\ge4ab\)
Theo bất đẳng thức Côsi: \(a+b\ge2\sqrt{ab};\text{ }1+ab\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\text{ (đpcm).}\)
Đẳng thức xảy ra khi \(a=b;\text{ }ab=1\Leftrightarrow a=b=1\)
1. cho a,b>0 CMR (a+b)(ab+1)>=4ab
Áp dụng bất đẳng thức Cô-si với hai số \(a,b\) không âm, ta có:
\(a+b\ge2\sqrt{ab}\) \(\left(1\right)\)
\(ab+1\ge2\sqrt{ab}\) \(\left(2\right)\)
Nhân \(\left(1\right)\) với \(\left(2\right)\) vế theo vế, ta được:
\(\left(a+b\right)\left(ab+1\right)\ge4ab\) \(\left(đpcm\right)\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(a=b\) và \(ab=1\) \(\Leftrightarrow\) \(a=b=1\) (do \(a>0\) và \(b>0\), tức \(a,b\) dương)
Chú ý (không ghi): bài này có nhiều cách, bạn có thể tìm cách mới!
cho 2 số ko âm a,b
CMR: \(a+4b\ge\frac{16ab}{1+4ab}\)
Với a,b không âm,áp dụng CAUCHY 2 lần ta có
\(a+4b\ge2\sqrt{4ab}=4\sqrt{ab}\)(1)
\(1+4ab\ge2\sqrt{4ab}=4\sqrt{ab}\)(2)
Nhân 2 vế của (1) và (2) ta có:\(\left(a+4b\right)\left(1+4ab\right)\ge16ab\)
Lại chia cả 2 vế cho (1+4ab) ta được điều cần cminh...
các bạn ơi **** mình cái mình đang cần khôi phục ****
cho a,b là các số không âm. CMR: (1+a+b)/2>_(1+a+b+ab)/2+a+b
cho a,b,c không âm thoả mãn a+b+c = 1.Cmr ab/(c+1) +ac/(b+1) + bc/(a+1) <= 1/4
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(a+c\right)\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự ta có:
\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{b+a}+\frac{bc}{c+a}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{c+b}\right)\)
Cộng theo vế ta được:
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)+\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)+\left(\frac{bc}{b+a}+\frac{ac}{a+b}\right)\right]\)
\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Cho các số a và b không âm.
CMR: (a + b)(ab + 1) ≥ 4ab
Áp dụng bất đẳng thức AM-GM cho hai số a và b không âm:
\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab}=4\left(\sqrt{ab}\right)^2=4ab\)(đpcm)
Áp dụng BDT Cô-si: \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\\ ab+1\ge2\sqrt{ab}\\ \Rightarrow\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}\cdot2\sqrt{ab}=4ab\left(đpcm\right)\)
cho a,b,c không âm thỏa mãn a+b+c=3. Tìm GTLN P = 4ab + 6ac + 8bc