Giá trị của x > 1 thoả mãn:
\(\frac{1}{2}\)+\(\frac{1}{3}\)< x < 3 \(\frac{1}{3}\)(x là số tự nhiên)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Giả sử x,y là các số nguyên dương thay đổi thoả mãn : \(\frac{xy+1}{x+y}\)<\(\frac{3}{2}\) .Tìm giá trị lớn nhất của M=\(\frac{x^3y^3+1}{x^3+y^3}\)
Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)
giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)
+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)
+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)
Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)
=> \(b\in\left\{1;2;3\right\}\)
+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)
+ Với b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)
+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.
cho x, y là các số thực dương thoả mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3^{ }}=\frac{1}{xy}\)
Câu 1: Cho a, b, c là các số nguyên khác 0 thoả mãn ab-ac+bc+c2=-1. Khi đó \(\frac{a}{b}\)=...
Câu 2: Tập hợp các giá trị nguyên của x thoả mãn \(\left(x^2+4x+7\right)\vdots\left(x+4\right)\)là {...}
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")
Câu 3: Số cặp (x;y) nguyên thoả mãn (y+1)(xy-1)=3 là...
Câu 4: Phân số tiếp theo của dãy\(\frac{1}{3};\frac{1}{15};\frac{1}{35};\frac{1}{63};...\)là...
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
cho x, y là các số nguyên dương thoả mãn x+y=1
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
cho x,y,z là các số thực thoả mãn:\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+z-3}{z}=\frac{1}{x+y+z}\)
tính giá trị của biểu thức :A=\(2016.x+y^{2017}+z^{2017}\)
T ÌM GIÁ trị của x thoả mãn: |2x+3|+|2x-1|=\(\frac{8}{3\left(x+1\right)^2+2}\)
Ta có: \(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\)(1)
Ta lại có: \(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)
=> \(\left|2x+3\right|+\left|2x-1\right|\ge4\) (2)
Từ (1); (2) : \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)
<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow x=-1}\)(TM)
Vậy:...