cho tam giác ABC có BC=8cm.Gọi D và E lần lượt là trung điểm của cạnh AB và AC,M và N lần lượt là trung điểm của các cạnh BC và CE.Tính MN.
Cho tam giác ABC có BC = 8cm. Gọi D và E lần lượt là trung điểm các cạnh AB, AC. M và N lần lượt là trung điểm của BD và CE. Khi đó MN =.........cm
Xét tam giác ABC, có:
* D, E lần lượt là trung điểm của AB, AC (gt)
=> DE là đường trung bình của tam giác ABC
=> DE // BC
=> DE = 1/2 BC = 1/2 . 8 = 4 (cm)
Ta có: DE // BC (cmt)
=> DECB là hình thang
Xét hình thang DECB (DE // BC), có:
* M, N lần lượt là trung điểm của DB, EC (gt)
=> MN là đường trung bình của hình thang DECB
=> MN = (DE + BC) : 2 = (4+8) : 2 = 6 (cm)
Cho tam giác ABC có BC = 8cm. Gọi D và E lần lượt là trung điểm các cạnh AB, AC. M và N lần lượt là trung điểm của BD và CE. Khi đó MN =.........cm
Xét tam giác ABC, có:
* D, E lần lượt là trung điểm của AB, AC (gt)
=> DE là đường trung bình của tam giác ABC
=> DE // BC
=> DE = 1/2 BC = 1/2 . 8 = 4 (cm)
Ta có: DE // BC (cmt)
=> DECB là hình thang
Xét hình thang DECB (DE // BC), có:
* M, N lần lượt là trung điểm của DB, EC (gt)
=> MN là đường trung bình của hình thang DECB
=> MN = (DE + BC) : 2 = (4+8) : 2 = 6 (cm)
nhé !
Bài 3: Cho tam giác ABC có BC = 8cm. Gọi D và E lần lượt là trung điểm của các cạnh AB,AC.
a) Gọi M và N lần lượt là trung điểm của BD và CE. Tính độ dài đoạn MN.
a: Xét hình thang BDEC có
M là trung điểm của BD
N là trung điểm của EC
Do đó: MN là đường trung bình của hình thang BDEC
Suy ra: \(MN=\dfrac{DE+BC}{2}=\dfrac{8+4}{2}=6\left(cm\right)\)
1 ) cho tam giác ABC có AB=AC . trên các cạnh AB,AC lần lượt lấy các điểm E và F sao cho AE = AF
cm : AF // BC
2) cho tam giác ABC có M và N lần lượt là trung điểm của AB , AC
cm : MN // BC và MN = 1 phần 3 BC
Cho tam giác abc, ab=ac. Trên cạnh ab và ac lần lượt lấy 2 điểm m và n sao cho am=an. Gọi e và d lần lượt là trung điểm của mn và bc. Cmr: a d e thẳng hàng
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.
cho tam giác abc gọi d là trung điểm ab kẻ DE//BC (E thuộc AC ).biết bc = 10 cm
a) tính DE .
b)gọi p và q lần lượt là trung điểm của bd và ce.tính pq.
c)pq cắt be và cd tại m và n . tính mn
a: Xét ΔABC có
DE//BC
nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)
hay DE=5(cm)
b: Xét hình thang BDEC có
P là trung điểm của BD
Q là trung điểm của EC
Do đó: PQ là đường trung bình của hình thang BDEC
Suy ra: PQ//DE//CB và \(PQ=\dfrac{DE+BC}{2}=\dfrac{10+5}{2}=7.5\left(cm\right)\)
Cho tam giác ABC , định trên cạnh AB và AC các điểm D và E sao cho BD = CE . Gọi M là trung điểm của DE , N là trung điểm của BC . I và F lần lượt là giao điểm của MN với AC và AB . Chứng minh tam giác AIF cân
Cho tam giác ABC có AB=AC .Trên hai cạnh AB và AC lần lượt lấy 2 điểm M và N sao cho AM=AN . Gọi D,E làm lượt là trung điểm của MN và BC .CMR : 3 điểm A,E,D thẳng hàng
mik chx hiểu câu hỏi bn là j lun á
Cho tam giác ABC. Biết D và E lần lượt là trung điểm của các cạnh AB và AC, BE và CD cắt nhau tại M, cạnh AM cắt cạnh BC tại N. Chứng minh N là trung điểm của cạnh BC.
Vì D,E là trung điểm của 2 cạnh AB,AC =>BE và CD là 2 đường trung tuyến tam giác ABC.
Mà BE và CD cắt nhau tại M =>M là trọng tâm tam giác ABC
=> AN là trung tuyến tam giác ABC
Hay N là trung điểm của BC.
cho tam giác ABC có AB=AC,M và N lần lượt là trung điểm của các cạnh AB và AC .Trên cạnh BC lấy điểm D và E sao cho BD=DE=EC
a.ME=ND
b gọi I là giao điểm của ME và ND.Cm:tam giác IDE cân
c Cm:AI vuông góc BC