Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yuki
Xem chi tiết
Nguyễn Duy Hưng
Xem chi tiết
Lê Song Phương
15 tháng 6 2023 lúc 11:39

Đặt \(gcd\left(a,b\right)=d\) và \(lcm\left(a,b\right)=m\) \(\left(d,m\inℕ^∗\right)\). Điều kiện đã cho tương đương \(d+m+a+b=ab\) \(\Leftrightarrow\dfrac{d}{ab}+\dfrac{m}{ab}+\dfrac{1}{a}+\dfrac{1}{b}=1\)   (1)

 Ta lại có \(dm=ab\) (mình sẽ chứng minh cái này sau) nên từ (1) ta có \(\dfrac{1}{m}+\dfrac{1}{d}+\dfrac{1}{a}+\dfrac{1}{b}=1\)     (2).

Do \(d\le b\le a\le m\) nên \(\dfrac{1}{m}\le\dfrac{1}{a}\le\dfrac{1}{b}\le\dfrac{1}{d}\). Kết hợp với (2), ta được \(1=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{d}\le\dfrac{4}{d}\) \(\Leftrightarrow d\le4\) hay \(d\in\left\{1,2,3,4\right\}\).

 Nếu \(d=1\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=0\), vô lí.

 Nếu \(d=2\) thì ta có \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\), khi đó \(\dfrac{1}{2}=\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{3}{b}\) nên \(b\le6\) hay \(b\in\left\{1,2,3,4,5;6\right\}\). Dĩ nhiên \(b\) không thể là số lẻ do \(d=2\) là ước của b. Vậy thì \(b\in\left\{2,4,6\right\}\). Nếu \(b=2\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=0\), vô lí. Nếu \(b=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{4}\le\dfrac{2}{a}\Leftrightarrow a\le8\) hay \(a\in\left\{1,2,3,4,5,6,7,8\right\}\). Do a cũng là số chẵn nên \(a\in\left\{2,4,6,8\right\}\), mà \(a\ge b\) nên suy ra \(b\in\left\{4,6,8\right\}\). Có \(b=4\) và \(b=6\) thỏa mãn. Nếu \(b=8\) thì \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{3}{8}\le\dfrac{2}{a}\Leftrightarrow a\le\dfrac{16}{3}\Leftrightarrow a\le5\), mà \(a\ge b\) nên vô lí

 Nếu \(d=3\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}\le\dfrac{3}{b}\) \(\Leftrightarrow b\le\dfrac{9}{2}\Leftrightarrow b\le4\) hay \(b\in\left\{1,2,3,4\right\}\). Mà \(b⋮3\) nên \(b=3\). Khi đó \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{3}\le\dfrac{2}{a}\Leftrightarrow a\le6\) Nhưng vì \(a⋮3\) nên \(a\in\left\{3,6\right\}\). Nếu \(a=3\) thì thử lại không thỏa mãn. Nếu \(a=6\) thì thỏa mãn.

 Nếu \(d=4\) thì \(\dfrac{1}{m}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\le\dfrac{3}{b}\) hay \(b\le4\). Mà \(b⋮4\) nên \(b=4\), từ đó suy ra \(\dfrac{1}{m}+\dfrac{1}{a}=\dfrac{1}{2}\le\dfrac{2}{a}\Leftrightarrow a\le4\), vì \(a⋮4\)  nên \(a=4\).

 Vậy ta tìm được các cặp số (4;4); (4;6); (6;3) thỏa ycbt.

 (*) Như mình đã hứa, mình sẽ chứng minh \(gcd\left(a,b\right).lcm\left(a,b\right)=ab\):

 Ta biết rằng 1 số tự nhiên N khác 0 bất kì có thể viết được dưới dạng \(N=p_1^{a_1}.p_2^{a_2}...p_n^{a_n}\) với \(p_i\left(i=\overline{1,n}\right)\) là các số nguyên tố đôi một phân biệt còn \(a_i\left(i=\overline{1,n}\right)\) là các số tự nhiên. 

 Trở lại bài toán, ta đặt \(a=p_1^{m_1}.p_2^{m_2}...p_k^{m_k}\) và \(b=p_1^{n_1}.p_2^{n_2}...p_k^{n_k}\). Khi đó, rõ ràng \(gcd\left(a,b\right)=p_1^{min\left\{m_1,n_1\right\}}.p_2^{min\left\{m_2,n_2\right\}}...p_k^{min\left\{m_k,n_k\right\}}\) và \(lcm\left(a,b\right)=p_1^{max\left\{m_1,n_1\right\}}.p_2^{max\left\{m_2,n_2\right\}}...p_k^{max\left\{m_k,n_k\right\}}\). Do đó \(gcd\left(a,b\right).lcm\left(a,b\right)=\prod\limits^k_{i=1}p_i^{min\left\{m_i,n_i\right\}+max\left\{m_i,n_i\right\}}=\prod\limits^k_{i=1}p_i^{m_i+n_i}=ab\) (kí hiệu \(\prod\limits^k_{i=1}A_i=A_1A_2...A_k\)

, ta có đpcm

Nguyễn Duy Hưng
15 tháng 6 2023 lúc 8:29

giúp mik 

 

AKIRA
15 tháng 6 2023 lúc 8:40

giúp mình trả lời câu hỏi đi

 

 

Anh Thư
Xem chi tiết
Đinh Tuấn Việt
23 tháng 7 2015 lúc 15:30

Làm từng bài 1 thôi vì mấy bài này cũng khác dài.                        

Anh Thư
23 tháng 7 2015 lúc 15:32

thế cậu làm giúp tớ nha

 

Bùi Đình Long
12 tháng 12 2023 lúc 19:38

Hè grt

Hồ Mỹ linh
Xem chi tiết
Đinh Tuấn Việt
26 tháng 9 2015 lúc 17:55

a = ƯLCN(420; 700)

Ta có :

420 = 42 . 10 = 6 . 7 . 2 . 5 = 22 . 3 . 5 . 7

700 = 7 . 102 = 22 . 52 . 7

=> ƯLCN(420 ; 700) = 22 . 5 . 7 = 140

Vậy a = 140

nguyễn thùy linh
Xem chi tiết
thanh tam tran
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Quang Đẹp Trai
17 tháng 11 2020 lúc 20:00

mik chỉ làm đc phần 2 thôi

x thuộc ƯCLN(65,66)

65=5.13

66=3.2.11

=>65 và 66 là 2 SNT cùng nhau nên ƯCLN(65,66)=1

Khách vãng lai đã xóa
Nguyễn Phương Anh
Xem chi tiết
Nguyễn Thị Thanh Mai
Xem chi tiết

a, 70=2.5.10; 90=2.32.5

=> ƯCLN(70;90)=2.5=10 => ƯC(70;90)=Ư(10)={1;2;5;10}

b, 180=22.32.5 ; 235= 47.5; 120=23.3.5

=> ƯCLN(180;235;120)= 5 => ƯC(180;235;120)=Ư(5)={1;5}

Mình xét ước tự nhiên thui ha

 

Trên là bài 1, dưới này là bài 2!

a, 480 và 720 đều chia hết cho x

480=25.3.5; 720= 24.32.5

=> ƯCLN(480;720)=24.3.5=240

=> x=ƯCLN(480;720)=240

b, 240 và 360 đều chia hết cho x

240=24.3.5; 360=23.32.5

=>ƯCLN(240;360)=23.3.5=120

x=ƯCLN(240;360)=120