\(\frac{x+199}{200}+\frac{x+198}{201}+\frac{x+197}{202}=-3\)
Tìm x biết: \(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}\)
Ủa ko có vế phải thì mình làm bằng niềm tin à? :D
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B
Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:
B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A
=> \(\frac{A}{B}\)\(=\frac{1}{200}\)
=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)
=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)
(x-20).\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)=\(\frac{1}{2000}\)
Giúp mk với
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+....+\left(\frac{198}{2}+1\right)+1}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{2000}\)
\(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
\(\left(x-20\right)=\frac{1}{2000}:\frac{1}{200}=\frac{1}{2000}.200=\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{10}+20=\frac{201}{10}\)
Không tính , hãy so sánh :
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}\)
\(B=\frac{199+200+201}{200+201+202}\)
\(\frac{199}{200}>\frac{199}{200+201+202}\)
\(\frac{200}{201}>\frac{200}{200+201+202}\)
\(\frac{201}{202}>\frac{201}{200+201+202}\)
=>\(A>B\)
Do \(\frac{199}{200}\)> \(\frac{199}{200+201+202}\), \(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B
Không tính , hãy so sánh :
\(A=\) \(\frac{199}{200}+\frac{200}{201}+\frac{201}{202}\)
\(B=\frac{199+200+201}{200+201+202}\)
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}\)
A \(< \frac{199+200+201}{200+201+202}=B\)
\(A< B\)
Ta có: \(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \)
\(< \frac{199+200+201}{200+201+202}\)
Vậy A < B
ỦNG HỘ TỚ NHA
\(B=\frac{199+200+201}{200+201+202}\)
\(B=\frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \frac{199}{200}+\frac{200}{201}+\frac{201}{202}=A\)
Vậy B < A ( bài này chủ yếu so sánh hai phân số cùng từ, phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn )
Tính: \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right)}\)
\(=\frac{1}{200}\)
A=\(\frac{1.2+2.3+3.4+.....+20.21}{1+2-3-4+5+6-7-8+......+197+198-199-200+201}\)
Tính A
\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\) (1)
đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)
\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)
\(3B=20\cdot21\cdot22\)
\(B=\frac{20\cdot21\cdot22}{3}=3080\) (2)
đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)
\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)
\(C=-4+\left(-4\right)+...+\left(-4\right)+201\) có 50 số -4
\(C=-4\cdot50+201\)
\(C=-200+201\)
\(C=1\) (3)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)
Rút gọn:
\(A=\frac{200+\frac{199}{2}+\frac{198}{3}+...+\frac{2}{199}+\frac{1}{200}}{\frac{100}{2}+\frac{100}{3}+...+\frac{100}{200}+\frac{100}{201}}\)
cho A /\(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
cho B:\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
Tính A:B
i don't now
mong thông cảm !
...........................