Cho tam giác ABC cân tại A.Góc A=120Độ.BC=6cm.đường vuông góc với AB tại A cắt BC tại D.Tính độ dài BD
Tam giác ABC cân tại A,A=120 độ,BC=6cm.Đường vuông góc với AB tại A cắt BC ở D.Tính độ dài BD(MÌNH CHỈ CẦN HÌNH VẼ THÔI NHA,AI LÀM NHANH MÌNH TICK CHO)
Ta có:\BAC=120,\BAD=90 suy ra DAC=30.
Vì tam giác ABC cân nên \B=\C
Trong tam giác ABC có:
\BAC+\B+\C=180(tổng 3 góc trong tam giác)
suy ra \B+\C=60
Mà:\B=\C\suy ra:\B=\C=30
Trong tam giác ADC có:\DAC=\C nên là tam giác cân tại D.
suy ra AD=DC.
Vì tam giác ABD vuông có \B=30
suy ra Tam giác ABD là nửa tam giác đều(điều này chắc bạn học rồi nhỉ)
suy ra=1/2BD.
Mà AD=DCsuy ra DC=1/2BD.
Ta có:BD+DC=BC
Mà DC=1/2BD
Thì ta dễ dàng suy ra được:BD=4,còn DC=2.
Vậy:BD=4 cm.
tk nha bạn
thank you bạn
(^_^)
Cho tam giác ABC cân tại A, góc A bằng 120 độ, BC bằng 6cm.Đường Vuông góc với AB tại A cắt BC ở D. Tính BD
Cho tam giác ABC cân tại A, góc A=120 độ, BC =6 cm .Đường vuông góc với AB tại A cắt BC ở D.Tính BD
cho tam giác ABC cân tại A có góc A=120 độ, BC=6cm. Đường vuông góc với AB tại A cắt BC tại D.Tính DB(dùng kiến thức nửa tam giác đều để giải)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b:
Sửa đề: AN=2cm
MN//BC
=>MN/BC=AN/AC
=>MN/10=2/8=1/4
=>MN=2,5cm
c AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm; DC=40/7cm
Cho tam giác ABC vuông tại A có AB bằng 9 cm AC bằng 12 cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc với AC E thuộc AC a
c.Tính độ dài đoạn thẳng bc B
d.Tính tỉ số bd trên BC và tính độ dài BD và CD
e.chứng minh tam giác ABC đồng dạng với tam giác ABC tính BC
Cho tam giác ABC cân tại A, góc A = 120độ, BC = 6cm. Đường vuông góc với AB tại A cắt BC ở D. Tính độ dài BD.
Ta có: BAC=120, BAD=90 => DAC=30
Vì tam giác ABC cân nên B=C
Trong tam giác ABC có
BAC + B + C=180(tổng 3 góc trong tam giác)
=> B + C=60
Mà: B=C =>: B= C=30
Trong tam giác ADC có: DAC=C nên tam giáccân tại \D
=> AD=CD
Vì tam giác ABD là nửa tam giác đều
=> AD= \(\frac{1}{2}\) BD
Mà BD=DC => DC=
21 BD
Ta có BD+DC=\(\frac{1}{2}\)BC
Mà DC=\(\frac{1}{2}\) BD
Thì ta dễ dàng suy ra được BD=4,còn DC=2
Vậy BD=4
p/s : kham khảo
Ta có: BAC=120, BAD=90 => DAC=30
Vì tam giác ABC cân nên B=C
Trong tam giác ABC có
BAC + B + C=180(tổng 3 góc trong tam giác)
=> B + C=60
Mà: B=C =>: B= C=30
Trong tam giác ADC có: DAC=C nên tam giáccân tại \D
=> AD=CD
Vì tam giác ABD là nửa tam giác đều
=> AD= 12 BD
Mà BD=DC => DC=
21 BD
Ta có BD+DC=12 BC
Mà DC=12 BD
Thì ta dễ dàng suy ra được BD=4,còn DC=2
Vậy BD=4
cho tam giác ABC cân tại A.Góc A nhọn.Kẻ BC vuông góc với AC tại D,CE vuông góc với AB tại E.I là giao điểm của BD với CE.Chứng Minh
a) BD =CE
b) AI là tia phân giác góc BAC
1 . Cho tam giác ABC cân tại A , góc A = \(120^o\) , BC= 6cm . Đường vuông góc với AB tại A cắt BC ở D . Tính độ dài BD
2 . Cho tam giác ABC vuông cân tại A , đường trung tuyến AM . Trên BC lấy E , kẻ BH vuông góc với AE tại H , kẻ CK vuông góc với AE tại K . Chứng minh tam giác MHK vuông cân
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)