k.(k+1).(k+2)-(k-1).k.(k+1)=3.k.(k+1)
c/m: 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
ta có:1.2.3.4-1.2.3.4=0
2.3.4.5-2.3.4.5=0(2.3.4.5 ở trong dấu .....)
cứ làm như vậy tổng trên chỉ còn:k(k+1)(k+2)(k-1)
bài này dễ mà mình mới học lớp 6 thôi
Bài này là bài lớp 4 hay lớp 5 gì đó, lớp 8 đâu ra
Chứng minh rằng: k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)=4k(k+1)(k+2) trong đó k=1,2,3,...
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)=k(k+1)(k+2).[(k+3)-(k-1)]=4k(k+1)(k+2)
=>đpcm
nguyen thieu cong thanh làm đúng rùi. ****
chung minh rang:
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)=4k(k+1)(k+2)
k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
=k(k+1)(k+2).[(k+3)-(k-1)
=4k(k+1)(k+2)
=>Dqcm
Chứng tỏ k.(k+1).(k+2)-(k-1).k.(k+1)=3.k.(k+1)
k(k+1)(k+2)-(k-1)k(k+1)=k(k+1)(k+2-k+1)=3.k.(k+1)
S=1.2+2.3+3.4+...+n(n+1)
=>3S=1.2.3+2.3.3+3.4.3+...+n(n+1)3
=1.2.3+2.3.(4-1)+3.4(5-2)+...+n.(n+1)[(n+2)-(n-1)]
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
=n(n+1)(n+2)
\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Cho S= 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương.
Cho e hỏi là vì sao khi :
S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4
=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)
Tới đoạn này thì S lại bằng:
=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
Và sau đó chỉ còn: =(k-1)k(k+1)(k+2)
MONG CÁC BẠN, CÁC THẦY CÔ GIẢI ĐÁP GIÚP MÌNH!!!
c/m rằng k(k+1)(k+2)-(k-1)k(k+1)=3.k(k+1)
K(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
=k(k+1)(k+2-k+1)
=k(k+1)3
=3k(k+1)(đpcm)
Với k thuộc N. chứng minh
K * (k+1) * (k+2) - (k-1) * k * (k+1) = 3 * k * (k+1)
Đề là gì, bạn ghi mình không hiểu gì cả !
Vế trái = \(k\cdot\left(k+1\right)\left(k+2\right)-\left(k-1\right)\cdot k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\) = Vế phải
Chứng minh với k E N* ta luôn có k(k+1)(k+2)-(k-1)k(k+1)=3.k.(k+1)
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3 . k . (k + 1)
k . (k + 1) . [(k + 2) - (k - 1)]
= k . (K + 1) . 3 = 3 . k . (K + 1) => ĐPCM
Ta có k(k+1)(k+2) là tích 3 stn nên chia hết cho 6
k(k-1)(k+1) là tích 3 stn nên chia hết cho 6
do đó VT chia hết cho 6
xét vế phải k(k+1) chia hết cho 2 mà nhân thêm 3 nên sẽ chia hết cho 6
VP chia hết cho 6
Do đó với mọi k thuộc N ta luôn có được nghiệm của bài
Chứng minh:Với k thuộc N ta luôn có :k(k+1)(k+2)-(k-1)k(k+1)=3. k(k+1)
Có vế trái:
= [k(k+1)].[(k+2)-(k-1)]
=[k(k+1)].3=3k(k+1) => (ĐPCM)
Ta co: k.(k+1).(k+2)-(k-1).k(k+1)
= k.(k+1) .((k+2)-(k-1)
= k.(k+1).3
= 3k.(k+1)
Mỗi nhóm quyền cần thiết như thế nào đối với cuộc sống của mỗi trẻ em???
Fast!!!!!!!!!!!