cho biểu thức P=\(\frac{\sqrt{x}+1}{x-1}\)-\(\frac{x+2}{x\sqrt{x}-1}\)-\(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a,rút gọn P
b,tìm GTLN của biểu thức Q=\(\frac{2}{P}+\sqrt{x}\)
Cho biểu thức:
\(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
a) Rút gọn A.
b) Tìm GTLN của biểu thức A.
a) ĐK : \(x\ge0\)
A = \(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\cdot\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) \(A=\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{x-\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le1\)
=> Max A = 1
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1
Vậy Max A = 1 <=> x = 1
Câu 1: Cho biểu thức:\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn biểu thức b)Tìm x để D < 1 c) Tìm GT nguyên của x để D thuộc Z
Câu 2: Cho biểu thức: \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) Rút gọn P b) Tính GT của P biết \(x=\frac{2}{2+\sqrt{3}}\)
Câu 3: Cho biểu thức: \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Tìm GT của x để A xác định b) Rút gọn A c) Tìm x sao cho A > 1
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
Cho biểu thức P=(\(\frac{\sqrt{x}}{\sqrt{x}+x}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a/Rút gọn P
b/Tìm x để \(\frac{1}{P}=\sqrt{x}+2\)
c/Tìm GTLN của P
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0
1. Cho biểu thức: B = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right).\)
a) Rút gọn B.
b) Tìm x để B<0.
c) Tìm x để B = -2.
2. Tìm GTLN của A = \(\sqrt{1-x}+\sqrt{1+x}.\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
CHO BIỂU THỨC:
\(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) rút gọn A
b) CM: A>0 với mọi x \(\ne1\)
c) tìm x để A đạt GTLN, tìm GTLN đó