Rút gọn
\(\frac{8^2\cdot4^5}{2^{20}}\)
Rút gọn \(A=\frac{2\cdot4+4.8+8\cdot12+12\cdot16+16\cdot20}{1\cdot2+2\cdot4+4\cdot6+6\cdot8+8\cdot10}\) ta được A =?
tử số : 2.4 + 4.8 + 8.12 + 12.16 + 16.20
= 2.(1.2+2.4+4.6+6.8+8.10)
ta được 2. A=( 1.2+2.4+4.6+6.8+8.10) / ( 1.2+2.4+4.6+6.8+8.10)
=> A=2
Rút gọn \(A=\frac{2\cdot4+4\cdot8+8\cdot12+12\cdot16+16\cdot20}{1\cdot2+2\cdot4+4\cdot6+6\cdot8+8\cdot10}\) ta được A=
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)
rút gọn \(B=\frac{5}{1\cdot2\cdot3}+\frac{5}{2\cdot3\cdot4}+....+\frac{5}{n\cdot\left(n+1\right)\left(n+2\right)}\)
\(B=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{n.\left(n+1\right)\left(n+2\right)}\)
\(\Leftrightarrow\frac{2B}{5}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow B=\frac{5}{4}-\frac{5}{2\left(n+1\right)\left(n+2\right)}\)
Giá trị rút gọn của \(\frac{20\cdot4^{15}\cdot9^{20}-4\cdot3^{21}\cdot8^{10}}{10\cdot2^{10}\cdot6^{20}-2^{31}\cdot27^7}\)
Rút gọn \(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot3^{18}}\)
Giá trị rút gọn của \(\frac{20\cdot4^{15}\cdot9^{20}-4\cdot3^{21}\cdot8^{10}}{10\cdot2^{10}\cdot6^{20}-2^{31}\cdot27^7}\)
Rút gọn biểu thức sau :
a/ A = \(\frac{8\cdot4\cdot125\cdot25+96524+3476}{10\cdot125\cdot4\cdot25\cdot8}\)
b/ B = \(\frac{5+55+555+5555}{9+99+999+9999}\)
( dấu chấm là dấu nhân nha)
\(A=\frac{8\cdot4\cdot125\cdot25+96524+2476}{10\cdot125\cdot4\cdot25\cdot8}\)
\(A=\frac{1+96524+2476}{10}\)
\(A=\frac{99001}{10}\)
\(B=\frac{5+55+555+5555}{9+99+999+9999}\)
\(B=\frac{9}{5}\)
Rút Gọn :\frac{4^5\cdot 9^4-2\cdot 6^9}{2^{10}\cdot 3^8+6^8\cdot 20}