Tính nhanh:
1+2x1+3=?
Tính nhanh 5/2x1 + 4/1x11 + 3/11x12 + 1/2x15 + 1/2x15 + 13/15x4
tinh nhanh (5/12+1/2x1/3):(2x1/3-1x5/12)
\(\left(\frac{5}{12}+\frac{1}{2}.\frac{1}{3}\right):\left(2.\frac{1}{3}-1.\frac{5}{12}\right)\)
\(=\left(\frac{5}{12}+\frac{1}{6}\right):\left(\frac{2}{3}-\frac{5}{12}\right)\)
\(=\frac{7}{12}:\frac{1}{4}\)
\(=\frac{7}{3}\)
_Chúc bạn học tốt_
tinh nhanh (5/12+1/2x1/3):(2x1/3-1x1/12) giup mình
Đề bài
= ( 5/12 + 1/6 ) : ( 2/3 - 1/12 )
= ( 5/12 + 2/12 ) : ( 8/12 - 1/12 )
= 7/12 : 7/12
= 1
K Trắng nha .
Tính nhanh
A= 5/2x1 + 4/1x11 + 3/11x2 + 1/2x15 + 13/15x4
\(A=\frac{5}{2\times1}+\frac{4}{1\times11}+\frac{3}{11\times2}+\frac{1}{2\times15}+\frac{13}{15\times4}\)
\(=\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\)
\(=\frac{13}{4}\)hoặc 3,25
Vậy A = 13/4 hoặc 3,25
tinh nhanh (5/12+1/2x1/3):(2x1/3-1x1/12) giup mình
\(\left(\frac{5}{12}+\frac{1}{2}\times\frac{1}{3}\right):\left(2\times\frac{1}{3}-1\times\frac{1}{12}\right)\)
\(=\left(\frac{5}{12}+\frac{1}{6}\right):\left(\frac{2}{3}-\frac{1}{12}\right)\)
\(=\frac{7}{12}:\frac{7}{12}\)
\(=1\)
k bk tính nhanh!
Tính nhanh
M=2x1/117x3x1/119-116/117x5x118/119-3/119
Tìm x
a) 3(1-4x) (x-1)+a (3x-2) (x+3)= -27
b) 5(2x+3) (x+2)- 2(5x-4) (x-1) = 75
Tính nhanh:
a:1/3-3/4-(-3/5)+1/72-2/9-1/36+1/15
b:1/100-1/100x99-1/99x98-1/98x97-...-1/3x2-1/2x1
a,=(1/3+3/5+1/15)+(3/4+-1/36)+(1/72-2/9)=1+26/36-15/72=1+(52-15)/72=1+37/72=109/72
b,=1/100-(1/1x2+1/2x3+...+1/97x98+1/98x99+1/99x100)
=1/100-(1/1-1/2+1/2-1/3+...+1/97-1/98+1/98-1/99+1/99-1/100)
=1/100-(1/1-1/100)=1/100-99/100=-98/100=-49/50
chỉ có mk mk giải thôi đó l-i-k-e đi
tính nhanh
C = 1/100 - 1/100x99 - 1/99x98 - 1/98x97 - .... - 1/3x2 - 1/2x1
\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=-\frac{98}{100}=-\frac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=\frac{1}{100}-\left(\frac{1}{100}-1\right)\)
\(=1\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{-49}{50}\)