tìm tất cả các số nguyên tố p sao cho 1+p+p^2+p^3+p^4 là số chính phương
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
1) tìm tất cả các số nguyên tố p sao cho 2a là số nguyên tố
2) c/m rằng số chính phương khi chia cho 3 số dư chỉ có thể là 0 và 1
2/ Tìm một số chính phương có 4 chữ số sao cho khi viết 4 chữ số đó theo thứ tự ngược lại ta cũng đc 1 số chính phương và số chính phương này là bội của số chính phương ta cần tìn
3/ Tìm số nguyên tố p sao cho tống tất cả các ước dương của p^4 là 1 số chính phương
LÀM NHANH GIÚM NHA MẤY BẠN. AI LÀM NHANH, ĐÚNG NHẤT SẼ CÓ LIKE!!!
PLEASE HELP ME!!! =_+
Dao Thi Yen ko làm đc thì đừng có phá nhé
Tìm tất cả các số nguyên tố p sao cho \(3p^3-3p+1\) là số chính phương
1.Tìm tất cả các số nguyên tố p sao cho p2 + 2p là số nguyên tố
2.Tìm số tự nhiên a có 2 chữ số sao cho 2a+1 va 3a+1 là các số chính phương
3. Số 2100 viết trong hệ thập phân có bao nhiêu chữ số
1.p=3
2.a=40
3.31(bấm máy tính là ra mà bn)
2 Tìm một số chính phương có 4 chữ số sao cho khi viết 4 chữ số đó theo thứ tự ngược lại ta cũng đc 1 số chính phương và số chính phương này là bội của số chính phương ta cần tìn3 Tìm số nguyên tố p sao cho tống tất cả các ước dương của p 4 là 1 số chính phươngLÀM NHANH GIÚM NHA MẤY BẠN. AI LÀM NHANH, ĐÚNG NHẤT SẼ CÓ LIKE PLEASE HELP ME
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
tìm tất cả các số nguyên tố p sao cho tổng các ước của p2 là số chính phương.
Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.
Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)
Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\)
\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)
giờ tìm ước á
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
Bài 1. Chứng minh rằng: a) A = abc + bca + cba không là số chính phương. b) ababab không là số chính phương.
Bài 2. Tìm tất cả các số có bốn chữ số vừa là số chính phương, vừa là lập phương của một số tự nhiên.
Bài 3. Tìm số nguyên tố sao cho + là số chính phương.