A] c/m rằng a/b <c/d [ b>0, d>0 ] thì a/b <a+c/b+d < c/d
B] hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
help me ,please .thanks các bn nhìu
cho các số hữu tỉ x=a/b, y=c/d,b>0,d>0 và các số tự nhiên m, n với m khác 0, n khác 0.Chứng minh rằng nếu a/b < c/d thì a/b < m.a+ n.c/m.b + n.d < c/d
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng:
nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
help me
Vì x < y nên a/b<c/d
=>a.b+a.d<b.c+b.a
=>a.(b+d)<b.(c+a)
=>a/b<c+a/b+d
=>a/b<c+a/b+d<c/d
câu 1
giả sử x=a/m, y=b/m( a,b,m thuộc Z m>0) và x<y. chúng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y
câu 2
a,chứng tỏ rằng nếu a/b<c/d (b>0, d>0") thì a/b<a+c/b+d<c/d
b, hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
cậu tra trên google ấy , **** tớ cái nha !
nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng: nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
chứng tỏ rằng nếu
a\b < c\d (với b<0;d<0) thì a\b<a+c\b+d <c\d
a) Chứng tỏ rằng nếu a/b < c/d (b>0,d>0) thì a/b < a+c/b+d < c/d
\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)
\(\rightarrow ad+ab< bc+ab\)
\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(ad< bc\)
\(\rightarrow ad+cd< bc+cd\)
\(\rightarrow d.\left(a+c\right)< c.(b+d)\)
\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng : nếu a/b < c/d ( b > 0 ; d > 0 ) thì a/b < a+c/b+d< c/d
a) tìm 4 phân số lớn hơn \(\frac{-1}{2}\)và nhỏ hơn \(\frac{-1}{3}\)
b) Chứng minh rằng : \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)( với a, b, m\(\in Z\); m > 0 )
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Chứng tỏ rằng nếu a(b+d)<b(a+c) (b>0; d>0) thì a/b < a+c/b+d