1+1000
Tinh [(1+2012/1)*(1+2012/2)*(1+2012/3)*...*(1+2012/1000)]/[(1+1000/1)*(1+1000/2)*(1+1000/3)*...*(1+1000/2012)]
C ={(1+(1999/1))(1+(1999/2))(1+(1999/3))+...+(1+(1999/1000))}/{(1+(1000/1))(1+(1000/2))(1+(1000/3))...(1+(1000/1999))}
A=(1+1999/1).(1+1992/2).(1+1999/3)...(1+1999/1000)/(1+1000/1).(1+1000/2).(1+1000/3)...(1+1000/1999)
Tính A
Cho A=1001/1000*1000+1 + 1001/1000*1000+2 + ...... + 1001/1000*1000+1000
Chứng minh: 1<A*A<4
A = (1 + 1999/1)(1 + 1999/2)......(1 + 1999/1000)
B = ( 1 + 1000/1)(1 + 1000/2)......(1 + 1000/1999)
Tính A/B
\(A=\left(1+\dfrac{1999}{1}\right)\left(1+\dfrac{1999}{2}\right)...\left(1+\dfrac{1999}{1000}\right)\)
\(=\dfrac{2000}{1}.\dfrac{2001}{2}.\dfrac{2002}{3}...\dfrac{2999}{1000}\)\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}\)
\(B=\left(1+\dfrac{1000}{1}\right)\left(1+\dfrac{1000}{2}\right)...\left(1+\dfrac{1000}{1999}\right)\)
\(=\dfrac{1001}{1}.\dfrac{1002}{2}.\dfrac{1003}{3}...\dfrac{2999}{1999}\) \(=\dfrac{1001.1002.1003...2999}{1.2.3...1999}\)
\(\Rightarrow A:B=\left(\dfrac{2000.2001.2002...2999}{1.2.3...1000}\right):\left(\dfrac{1001.1002.1003...2999}{1.2.3...1999}\right)\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1999}{1001.1002.1003...2999}\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1000.\left(1001.1002...1999\right)}{1001.1002.1003....1999.\left(2000.2001.2002.2999\right)}\)\(=\dfrac{1.2.3...1000}{1.2.3...1000}=1\)
Vậy \(\dfrac{A}{B}=1\)
1/1000+13/1000+25/1000+37/1000+49/1000+...+87/1000+99/1000
1/1000+13/1000+25/1000+37/1000+49/1000+......+87/1000+99/1000
Ta có : 1+13+25+37+...+99/1000
Ta tính tử số
Số số hạng của tử số là : (99-1)/12+1
Sai đề bạn ơi
1/1000 + 13/1000+25/1000+37/1000+49/1000+...+87/1000+99/1000
khanh rat de doc ki de roi neu ko hieu thi nhan tin hoi minh
Viết đầy đủ các số hạng ta có:
1/1000 + 13/1000 + 25/1000 + 37/1000 + 49/1000 + 51/1000 + 63/1000 + 75/1000 + 87/1000 + 99/1000
= 1 + 13 + 25 + 37 + 49 + 51 + 63 + 75 + 87 + 99/ 1000
= ( 1 + 99 ) + ( 13 + 87) + ( 25 + 75 ) + ( 37 + 63) + ( ( 49 + 51)/ 1000
= 5 x 100/ 1000
= 500/ 1000
= 1/2
\(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+\frac{37}{1000}+\frac{49}{1000}+...+\frac{87}{1000}+\frac{99}{1000}\)
1/1000 + 13/1000 + 25/1000 + 37/1000 + +49/1000 + ............. + 97/1000 + 109/1000
\(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+....+\frac{109}{1000}\)
\(=\frac{1+13+25+....+109}{1000}\)
Áp dụng công thức tính dãy số ta có
\(1+13+25+...+109=\frac{\left[\left(109-1\right):12+1\right].\left(109+1\right)}{2}=\frac{10.110}{2}=10.55=550\)
Vậy
\(\frac{1+13+25+...+109}{1000}=\frac{550}{1000}=\frac{11}{20}\)
\(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+.......+\frac{109}{1000}\)
\(\frac{1+13+25+37+.....+97+109}{1000}\)
\(\frac{\left(\left(109-1\right):12+1\right).\left(109+1\right):2}{1000}\)
\(\frac{550}{1000}\)
= \(\frac{11}{20}\)
tính: B=[(1+2012/1)+(1+2012/2)+....+(1+2012/1000)]:[(1+1000/1)+(1+1000/2)+....+(1+1000/2012)]
.