Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyển hoàng giang
Xem chi tiết
Nguyên
23 tháng 7 2015 lúc 9:23

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}

Nguyễn Quang Minh
22 tháng 12 2016 lúc 21:10

Bạn Detective_conan giải đúng đấy!

ᎮᏁヽH. Tùng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 9 2020 lúc 18:14

\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)

\(2A-A=A\)

\(=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{49}}-\frac{1}{2^{50}}\)

\(=1-\frac{1}{2^{50}}< 1\)

\(\Rightarrow A< 1\)

Khách vãng lai đã xóa
⚽Trần Quốc🏆Huy🥇
2 tháng 9 2020 lúc 18:58

             \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

          \(2A=\text{​​}\text{​​}1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

             \(A=1-\frac{1}{2^{50}}\)

             Vậy \(A\)<  1

Khách vãng lai đã xóa
ᎮᏁヽH. Tùng
2 tháng 9 2020 lúc 20:37

1-1/2^50 sao lại bé hơn 1 vậy :V?

Khách vãng lai đã xóa
Phạm Thị Thủy Diệp
Xem chi tiết
lufffyvsace
9 tháng 4 2016 lúc 20:45

2A=1+1/2+................+1/2^49+1/2^50

A=1+1/2^50=> A>1

Kỳ Tỉ
Xem chi tiết
Nguyễn Xuân Sáng
1 tháng 5 2016 lúc 18:25

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=1-\frac{1}{50}\)

\(\Rightarrow1>M\)

TFBoys_Thúy Vân
1 tháng 5 2016 lúc 18:21

Ta có: 1/1.2+1/2.3+...+1/49.50

=        1-1/2+1/2-1/3+...+1/49-1/50

=        1-1/50

Ta có: 1-1/50 < 1 (luôn luôn đúng)

=> M<1

SKT_ Lạnh _ Lùng
1 tháng 5 2016 lúc 18:24

Ta có: 1/1.2+1/2.3+...+1/49.50

=        1-1/2+1/2-1/3+...+1/49-1/50

=        1-1/50

Ta có: 1-1/50 <  1 

=> M<1

 Tỉ ơi tích cho Đệ cái nha !!!

NameLess
Xem chi tiết
lê quốc đạt
Xem chi tiết
tran van nam
Xem chi tiết
Kalluto Zoldyck
27 tháng 4 2016 lúc 10:46

Gọi tổng trên là A

A = 1/22+1/33+.....+1/502

A = 1/2.2 + 1/3.3 +.....+ 1/50.50

A < 1/1.2 + 1/2.3 +.....+ 1/49.50

A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50

A < 1 - 1/50

A < 49/50 < 1
=> A < 1

Ai k mk mk k lại 

Đào Minh Nhật
27 tháng 4 2016 lúc 10:51

A=(1/2)*(1/2)+(1/3)*(1/3)+...+(1/50)*(1/50) = 1/(2*2)+1/(3*3)+1/(4*4)+...+1/(50*50) < 1/(1*2)+1/(2*3)+...+1/(49*50)

 Mà 1/(1*2)+1/(2*3)+...+1/(49*50) = 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 =1-1/50 <1                                                 

=> A<1


 

Edogawa Conan
Xem chi tiết
Đỗ Thị Hồng
4 tháng 8 2018 lúc 15:08

ta có 1/2^2<1/2

        1/2^3<1/2

.............

      1/2^50<1/2

\(\Rightarrow\)1/2*50>1/2^1+1/2^2+1/2^3+...........+1/2^50

\(\Rightarrow\)

Edogawa Conan
Xem chi tiết
Nguyễn Hoàng
4 tháng 8 2018 lúc 11:41

Tìm 2A 

Rồi lấy 2A - A là ra

Ok

Ngô Thế Trường ( CRIS DE...
4 tháng 8 2018 lúc 11:57

\(A=\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}\)

\(\Rightarrow A< 1\)

Melkior
4 tháng 8 2018 lúc 12:03

bạn ss trung gian 

vd 1/22<1/1.2