Tìm x, y thuộc Z , biết :
3n/n-1 có giá trị là số nguyên .
Làm chi tiết hộ mình nhé.
a) Tìm các giá trị n thuộc N để A=2n+5/3n+1 có giá trị là số tự nhiên.
b) Cho x,y,z thuộc N*. Chứng minh rằng A=x/x y + y/y+z + z/z+x có giá trị là một số không thuộc tập hợp số nguyên.
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
tìm các giá trị nguyên của n để phân số M=3n-1/n-1 có giá trị là số nguyên :
các bạn giúp mình nhé ! cách làm rõ ràng hộ mình nhé !
chú ý : dấu / là dấu gạch ngang của phân số . ví dụ : 5/7 . có nghĩa là : năm phần bảy
Tìm số nguyên n lớn nhất để:
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}\)có giá trị là 1 số nguyên.
Giải chi tiết nhé!
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Với giá trị nguyên nào của n thì phân số A=3n+9/n-4 có giá trị là số nguyên? Tính giá trị đó?
Các bạn làm chi tiết nhé, mau lên tớ cần gấp! Thank you
Mik cho bạn 1 cái link vào tham khảo nhé!
Câu hỏi của Minh Anh - Toán lớp 7 - Học toán với OnlineMath.
Tìm số nguyên n lớn nhất để :
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}\) có giá trị là 1 số nguyên.
Giải chi tiết nhé!
TÌm x thuộc Z để ps sau có giá trị là số nguyên
C = \(\frac{3x+8}{x-1}\)
Giải chi tiết ra nhé
3x+8 chia hết cho x-1.
3x+8=3x-3+11
3.(x-1)+11
x-1 chia hết cho x-1.
=>3.(x-1) chia hết cho x01.
=>11 chia hết cho x-1.
Lập bảng các ước ra mà làm.
3x+8 chia hết cho x-1.
3x+8=3x-3+11
3.(x-1)+11
x-1 chia hết cho x-1.
=>3.(x-1) chia hết cho x01.
=>11 chia hết cho x-1.
Lập bảng các ước ra mà làm.
3x+8 chia hết cho x-1.
3x+8=3x-3+11
3.(x-1)+11
x-1 chia hết cho x-1.
=>3.(x-1) chia hết cho x01.
=>11 chia hết cho x-1.
Lập bảng các ước ra mà làm.
TÌm x thuộc Z để ps sau có giá trị là số nguyên
C = \(\frac{3x+8}{x-1}\)
Giải chi tiết ra nhé
\(C=\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=\frac{3.\left(x-1\right)+8}{x-1}=\frac{3.\left(x-1\right)}{x-1}+\frac{8}{x-1}=3+\frac{8}{x-1}\)
Để C nguyên thì \(\frac{8}{x-1}\)nguyên
=> 8 chia hết cho x - 1
=> \(x-1\inƯ\left(8\right)\)
=> \(x-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=> \(x\in\left\{2;0;3;-1;5;-4;9;-7\right\}\)
\(C=\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=\frac{3\left(x-1\right)+11}{x-1}=3-\frac{11}{x-1}\)
Để C có giá trị nguyên <=>11 chia hết cho (x-1).
mà x thuộc Z => (x-1) thuộc Z.
Do đó \(\left(x-1\right)\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Sau đó bạn tự tìm x.
a) Chứng tỏ phân số : 2n+1/3n+1 là phân số tối giản ( với n thuộc N )
b) Tìm n thuộc Z để A = n-1/n+1 có giá trị là số nguyên
MÌNH ĐANG CẦN GẤP , MẤY BẠN GIÚP MÌNH NHÉ
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
gọi UCLN\(\text{(2n+1,3n+1)=d}\)
=>\(\text{6n+2}\) chia hết cho d
\(\text{6n+3}\) chia hết cho d
=>1 chia hết cho d
=>d=1
=>\(\text{2n+1/3n+1}\) tối giản
có ai học sinh giỏi toán giải đc bài này hộ mk ko
tìm n thuộc z để phân số 2n+3/3n-1 có giá trị là số nguyên
2n+33n−1∈Z2n+33n−1∈Z
<=> 2n + 3 chia hết cho 3n - 1
<=> 6n + 9 chia hết cho 3n - 1
<=> (6n - 2) + 11 chia hết cho 3n - 1
<=> 2(3n - 1) + 11 chia hết cho 3n - 1
<=> 11 chia hết cho 3n - 1
<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}
Thay từng giá trị vào 3n - 1 để tìm n
Rồi xét giá trị của n có nguyên hay không
Nếu không thì vứt
Nếu là số nguyên thì nhận
\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)
\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
3n-1 | 1 | -1 | 11 | -11 |
n | loại | 0 | 4 | loại |
úi mk nhìn chả hỉu gì cả vì mk ko giỏi môn này cho lắm
cảm ơn bn đã giúp mk nha