Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Linh
Xem chi tiết
Nguyễn Hải Ngân
Xem chi tiết
Cao Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 12:43

1/31>1/40

1/32>1/40

...

1/40=1/40

=>1/31+1/32+...+1/40>1/40*10=1/4

1/41>1/50

1/42>1/50

...

1/50=1/50

=>1/41+1/42+...+1/50>10/50=1/5

1/51>1/60

1/52>1/60

...

1/60=1/60

=>1/51+1/52+...+1/60>10/60=1/6

=>S>1/4+1/5+1/6=3/5

1/31<1/30

1/32<1/30

...

1/40<1/30

=>1/31+1/32+...+1/40<1/30*10=1/3

1/41<1/40

1/42<1/40

...

1/50<1/40

=>1/41+1/42+...+1/50<10/40=1/4

1/51<1/50

1/52<1/50

...

1/60<1/50

=>1/51+1/52+...+1/60<10/50=1/5

=>S<1/3+1/4+1/5=4/5

Nguyen Mai Binh
Xem chi tiết
Carthrine
7 tháng 7 2016 lúc 21:29

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

A > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

Vậy A > 3/5 (1)

Mặt khác

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50)  < 1/4 ;   (1/51 + 1/52+...+1/59+1/60) < 1/5

Mà A = (1/3 + 1/4 + 1/5) < 4/5 (Vì 1/3 + 1/5 < 3/5 hay 7/12 < 3/5 hay 35/60 < 36/60)

Vậy A <  4/5 (2)

Từ (1);(2)=> 3/5 <S <4/5 (dpcm)

Nguyễn thị mỹ phương 13
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Lê Anh Tú
3 tháng 3 2018 lúc 17:01
\(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+..+\frac{1}{50}\right)+\left(\frac{1}{51}+..+\frac{1}{60}\right)\)

\(\Rightarrow S>\left(\frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+..+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+..+\frac{1}{60}\right)\)

\(\Rightarrow S>10\cdot\frac{1}{40}+10\cdot\frac{1}{50}+10\cdot\frac{1}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(1\right)\)

\(S=\frac{1}{31}+\frac{1}{32}+..+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+..+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{60}\right)\)

\(S< \left(\frac{1}{31}+\frac{1}{31}+..+\frac{1}{31}\right)+\left(\frac{1}{41}+\frac{1}{41}+..+\frac{1}{41}\right)+\left(\frac{1}{51}+\frac{1}{51}+..+\frac{1}{51}\right)\)

\(S< 10\cdot\frac{1}{31}+10\cdot\frac{1}{41}+10\cdot\frac{1}{51}=\frac{10}{31}+\frac{10}{41}+\frac{10}{51}< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(2\right)\)

Từ (1) và (2) => đpcm

nuy
Xem chi tiết
Mathematics❤Trần Trung H...
25 tháng 5 2019 lúc 18:26

Ta có:

S=131+132+133+...+160S=131+132+133+...+160

⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14

141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15

151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16

⇒S>14+15+16=3760>35⇒S>14+15+16=3760>35

⇒S>35(1)⇒S>35(1)

Lại có:

S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13

141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14

151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15

⇒S<13+14+15=4760<45⇒S<13+14+15=4760<45

⇒S<45(2)⇒S<45(2)

Từ (1)(1) và (2)(2)

⇒35<S<45⇒35<S<45 (Đpcm)

Mathematics❤Trần Trung H...
25 tháng 5 2019 lúc 18:26

mình nhằm nha

để gửi lại ,

xin lỗi nhiều

Mathematics❤Trần Trung H...
25 tháng 5 2019 lúc 18:26

S sẽ có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 101 số hạng.

S= (1/31+1/32+...+1/40) + (1/41 + 1/42 +...+1/50) + (1/51 +1/52+...+1/60)

S < (1/30 + 1/30 +...+ 1/30) + ( 1/40 +1/40+...+1/40) + (1/50 +1/50+...+1/50)

S < 1/30 + 1/40 +1/50 ; S < 47/60 < 48/60 = 4/5 (1)

S > (1/40 + 1/40 +...=1/40) + (1/50 + 1/50 +...+1/50) + (1/60 +1/60+...+1/60)

S < 10/40 + 10/50 +10/60 ; S > 37/60 > 36/60 = 3/5 (2)

Tư (1) và (2) => 3/5 < S < 4/5

KhiêmGia Studio
Xem chi tiết

Tham khảo nha bạn:https://olm.vn/hoi-dap/detail/98411629106.html

Trường
29 tháng 4 2019 lúc 14:35

Ta thấy tổng trên có 30 số hạng. Ta nhóm tổng S thành 3 nhóm.

-> \(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\) 

\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) 

\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(1\right)\)

Ta lại có:

\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\) 

\(=\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(2\right)\)

Từ (1), (2), ta có:

\(\frac{3}{5}< S< \frac{4}{5}\RightarrowĐPCM\)

Trần Kim Cường
Xem chi tiết

\(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

...

\(\dfrac{1}{40}=\dfrac{1}{40}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{41}>\dfrac{1}{50}\)

\(\dfrac{1}{42}>\dfrac{1}{50}\)

...

\(\dfrac{1}{50}=\dfrac{1}{50}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

\(\dfrac{1}{51}>\dfrac{1}{60}\)

\(\dfrac{1}{52}>\dfrac{1}{60}\)

...

\(\dfrac{1}{60}=\dfrac{1}{60}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{10}{60}=\dfrac{1}{6}\)

=>\(S>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{3}{5}\)

\(\dfrac{1}{31}< \dfrac{1}{30}\)

\(\dfrac{1}{32}< \dfrac{1}{30}\)

...

\(\dfrac{1}{40}< \dfrac{1}{30}\)

=>\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)

\(\dfrac{1}{41}< \dfrac{1}{40}\)

\(\dfrac{1}{42}< \dfrac{1}{40}\)

...

\(\dfrac{1}{50}< \dfrac{1}{40}\)

=>\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{10}{40}=\dfrac{1}{4}\)

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{60}< \dfrac{1}{50}\)

=>\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{10}{50}=\dfrac{1}{5}\)

=>\(S< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{4}{5}\)

=>\(\dfrac{3}{5}< S< \dfrac{4}{5}\)