Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Trung
Xem chi tiết
đào mai thu
Xem chi tiết
Đinh Thị Khánh Linh
8 tháng 8 2018 lúc 21:10

a, Theo tính chất của tỉ lệ thuận ta có:

x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217

⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212

Vậy..............................

b, Theo t/c của tỉ lệ thuận ta có:

x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13

Áp dụng t/c của dãy tỉ số = nhau ta có:

x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27

⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67

Vậy.............

Darlingg🥝
21 tháng 6 2019 lúc 17:39

Bạn Đinh Thị Khánh Linh làm đúng rồi mik làm theo cách bài ấy nhé

Darlingg🥝
21 tháng 6 2019 lúc 17:46

À mik quên bạn ất làm sai rồi nhé

Coppy trên hoc.vn24

a) X và y là hai đại lượng tỉ lệ thuận nên ta có công thức:

X1/x2=y1/y2 do đó:

X1.y2=x2.y1

=>x1.(-2)=5.(-3)

=>x1.(-2)=-15

=>x1=-15:(-2)

=>x1=7,5

Vậy x1=7,5

bùi thu linh
Xem chi tiết
Huỳnh Quang Sang
30 tháng 7 2020 lúc 21:28

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé

Khách vãng lai đã xóa
nguyen thu phuong
Xem chi tiết
ngduyvietanh vào
29 tháng 5 2017 lúc 14:55

ko nói

Đinh Đức Hùng
29 tháng 5 2017 lúc 15:25

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra <=> \(x=y=z=1\)

Vậy ............

Trần Thảo Vy
Xem chi tiết
Phan Nghĩa
12 tháng 5 2021 lúc 12:15

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1

Khách vãng lai đã xóa
Lăng Nhược Y
Xem chi tiết
Lê Thị Ngọc Hà
Xem chi tiết
Trần Vũ Nhật Quân
Xem chi tiết
Huỳnh Diệu Linh
Xem chi tiết
nguyên thị phương anh
Xem chi tiết