Cho tam giác ABC vuông ở A. Kẻ đường cao AH, tia phân giác của góc A cắt BC tại D. Biết góc DAH=15 độ, tính các góc của tam giác ABC. (2 cách)
Cho tam giác ABC vuông tại A. Kẻ đường cao AH, tia phân giác vủa góc A cắt BC tại D. Biết Góc DAH=15 độ, tính các góc của tam giác ABC
300+CBA=900
CBA=600
Tam giác ABC vuông tại A nên ACB+CBA=900ACB+600=900
ACB=300
Vậy các góc của tam giác ABC là BAC=900;ABC=600;ACB=300Nếu thấy đúng thì li-ke giúp mình với nha!!!Cho tam giác ABC vuông ở A . Kẻ đường cao AH . Tia phân giác của góc A cắt BC tại D . Biết \(\widehat{DAH}\)= 15 độ . Tính các góc của tam giác ABC .
-Do Ad là tia phân gaisc của \(\widehat{A}\) nên \(\widehat{BAD}\)\(=\widehat{CAD}\)= \(45^o\)
=> \(\widehat{BAH}\)\(=\widehat{BAD}-\widehat{HAD}=45^o-15^o=30^o\)
-Xét tam giác ABH vuông tại H có: \(\widehat{B}=90^o-\widehat{BAH}=90^o-30^o=65^o\)
-Xét tam giác ABC vuông tại A có: \(\widehat{C}=90^o-\widehat{B}=90^o-65^o=25^o\)
Vậy \(\widehat{B}=65^o\), \(\widehat{C}=25^o\)
Cho tam giác ABC vuông ở A. Kẻ đường cao AH, tia phân giác của góc A cắt BC tại D. Biết góc DAH=15o. Tính các góc của tam giác ABC
Bài 1:
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Theo yêu cầu vẽ hình của bạn Hyouka :)
2.
:
Cách giải thích tại sao \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)?
Trường hợp điểm H nằm giữa B và D \((\widehat{B}>\widehat{C})\)
Trong hai tam giác vuông AHB và AHC vuông ở H theo tính chất tổng các góc của một tam giác,ta có :
\(\widehat{B}+\widehat{BAH}+\widehat{H}=180^0\)=> \(\widehat{B}=90^0-\widehat{BAH}\)
\(\widehat{C}+\widehat{CAH}+\widehat{H}=180^0\)=> \(\widehat{C}=90^0-\widehat{CAH}\)
Vậy \(\widehat{B}-\widehat{C}=\widehat{CAH}-\widehat{HAB}(1)\)
Vì điểm H nằm giữa hai điểm B và D nên AD là tia phân giác của góc BAC nên \(\widehat{DAB}=\widehat{DAC}=\frac{\widehat{A}}{2}\)
, do đó \(\widehat{DAH}=\frac{\widehat{A}}{2}-\widehat{HAB}\). Lại có \(\widehat{DAH}=\widehat{HAC}-\widehat{DAC}=\widehat{HAC}-\frac{\widehat{A}}{2}\).
Từ đó suy ra \(2\widehat{DAH}=\widehat{HAC}-\widehat{HAB}\)hay \(\widehat{DAH}=\frac{\widehat{HAC}-\widehat{HAB}}{2}\) \((2)\)
Từ 1 và 2 suy ra \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
cho tam giác ABC vuông tại A , kẻ đường cao Ah tia phân giác của góc A cắt BC tại D . biết DAH =15 . tính các góc còn lại
Bài 1:Tính các góc của tam giác ABC biết:
a,3A^ =4B^ và A^-B^ =20 độ
b,B^ -B^=10 độ và C^ -A^=10 độ
Bài 2:Cho tam giác ABC vuông ở A. Kẻ đường cao AH là tia phân giác của góc A cắt BC tại D. Biết góc DAH=15 độ. Tính các góc của tam giác ABC.
GIÚP MÌNH VỚI NHÉ!!! MÌNH CẢM ƠN CÁC BẠN NHIỀU!!!!!
Bài 1: Cho tam giác ABC có góc A = 70*. Tia phân giác của B cắt tia phân giác của C ở I và cắt đường phân giác của góc ngoài tại C ở K. Tính góc BIC và góc BKC.
Bài 2: Cho tam giác ABC vuông góc tại A, kẻ đường cao AH. Tia phân giác của góc A cắt BC tại D. Biết góc DAH = 15*. Tính các góc của tam giác ABC.
Bài 3: Cho tam giác ABC có góc A, B, C là góc nhọn, góc A = 50*. Qua B kẻ đoạn thẳng BD vuông góc với AC (D thuộc AC). Qua C kẻ CE vuông góc với AB (E thuộc AB). Gọi H là giao điểm của BD và CE.
a) Tính góc ABD và góc ACE.
b) Tính góc DHE.
32. Cho O là 1 điểm nằm trong tam giác ABC
a)Cmr góc BOC>góc BAC
b) Nếu O là giao điểm 2 tia phân giác của góc A và B, hãy cmr BOC là góc tù
33. Tính các góc của tam giác ABC,biết
a) 3 lần góc A=4 lần góc B và A-B=20 độ
b)góc B-góc C=10 độ và góc C-góc A=10 độ
34. Cho tam giác ABC. Các tia phân giác trong và ngoài của góc C cắt đg thẳng AB lần lượt ở D và E. Tính góc CED theo góc A và góc B của tam giác ABC
35. Cho tam giác ABC vuông ở A. Kẻ đg cao AH,tia phân giác của góc A cắt BC tại D. Biết góc DAH= 15 độ, tính các góc của tam giác ABC
36. Cho tam giác ABC. Tia phân giác của góc A cắt BC ở D. Tính các góc của tam giác ABC, biết góc ADB=80 độ và góc B=1,5 lần góc C
Cho tam giác ABC vuông ở A có góc B = 50đ. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC tại H. Tính góc DAH