Cho tứ giác ABCD, C + D=90độ. Gọi M,N,P,Q là trung điểm của AB,BD,DC,CA
a) chứng minh : MNPQ là hình chữ nhật
b) tìm tâm đường tròn đi qua 4 đỉnh MNPQ
Cho tứ giác ABCD. gọi M,N,P,Q lần lượt là trung điểm của AB,AC,DC,DB. Chứng minh tứ giác MNPQ là hình bình hành. Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình thoi, hình chữ nhật, hình vuông
Cho tứ giác ABCD gọi M N P Q lần lượt là trung điểm của các cạnh AB BC CD DA
A) Chứng minh tứ giác MNPQ là hình bình hành
b) tìm điều kiện hai đường chéo AC và BD của tứ giác ABCD để MNPQ là hình chữ nhật
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
Cho tứ giác ABCD có góc C+góc D=90 độ . Gọi M, N, P, Q lần lượt là trung điểm
của AB, BD, DC và CA. Chứng minh:
a) Tứ giác MNPQ là hình bình hành.
b) Bốn điểm M, N, P, Q cùng thuộc một đường tròn.
Hình thang ABCD (AB // CD) có DC = 2AB. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a. Chứng minh các tứ giác ABPD, MNPQ là hình bình hành
b. Tìm điều kiện của hình thang ABCD để MNPQ là hình thoi.
c. Gọi E là giao điểm của BD và AP. Chứng minh ba điểm Q, N, E thẳng hàng
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
Hình thang ABCD (AB//CD) có DC=2AB,Gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,BC,Cd,DA
a)chứng minh các tứ giác ABPD , MNPQ là hình bình hành
b) tìm điều kiện của hình thang ABCD để MNPQ là hình thoi
c) gọi E là giao điểm của BD và AP.Chứng minh 2 điểm Q,N,E thẳng hàng
Hình thang ABCD (AB // CD) có DC = 2AB. Gọi M , N , P , Q là trung điểm của các cạnh AB , BC , CD , DA.
a. Chứng minh các tứ giác ABPD , MNPQ là các hình bình hành.
b. Tìm điều kiện của hình thang ABCD để MNPQ là hình thoi.
c. Gọi E là giao điểm của BD và AP . Chứng minh ba điểm Q , N , E thẳng hàng.
a) Xét tứ giác ABPD
Có AB // = 1/2 DC
=> AB //=DC
=> ABPD là hbh
Xét tam giác ABC
Có MN là đường trung bình => MN //=1/2 AC
Xét tam giác ACD có
PQ là đường trung bình => PQ//=1/2 AC
=> MN//=PQ => MNPQ là hbh
b) HÌnh thang cân
c) Trung điểm đc của hình thoi cũng là trung điểm của đường chéo còn lại
Xét tam giác ADP : Có QE là đường tb => QE //DP
Xét tam giác BCD có EN là đường tb => EN // DC
=> Q,N,E thẳng hàng
Cho hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để MNPQ là hình chữ nhật, hình thoi, hình vuông?
c) Gọi O là giao điểm của AC,BD.Chứng minh: M,O,P thẳng hàng
d) Chứng minh : AC, BD, QN đồng qui
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
Cho tứ giác ABCD . Gọi M , N , P , Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA
a. Chứng minh tứ giác MNPQ là hbh
b. Hai đường chéo AC và BD thoả điều kiện gì để tứ giác MNPQ là hcn , hình thoi , hình vuông
Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA của tứ giác ABCD.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình chữ nhật
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành