cho 1 số có 3 chữ số dạng abc. chứng minh rằng (abc+bca+cab) chia hết cho (a+b+c)
Cho 1 số có 3 chữ số có dạng abc . Chứng minh rằng:
( abc + bca + cab ) chia hết cho ( a + b + c )
(abc+ bca +cab) = 100a +10 b +c +100 b+10 c +a +100c+10a+b
=111a +111b +111c
=111( a+b+c) chia hết cho a,b,c
=>Điều phải chứng minh
Cho số tự nhiên có 3 chữ số abc chia hết cho 37. chứng minh (bca + cab) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Cho abc ,bca, cab là các số tự nhiên có 3 chữ số.
Chứng minh rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37.
chứng minh rằng abc+bca+cab chia hết cho 3
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111(a + b + c)
= 3.37(a + b + c) ⋮ 3
Vậy (abc + bca + cab) ⋮ 3
1) Chứng minh rằng: 1 số tự nhiên được viết toàn bằng chữ số 4 thì không chia hết cho 8.
2)Chứng tỏ rằng:
a) Nếu số abc chia hết cho 37 thì bca và cab chia hết cho 37.
b) ab + ba chia hết cho 11.
c)ab - ba chia hết cho 9 (a>b).
3) tìm chữ số a, biết rằng: 20a20a20a chia hết cho 7.
Để mình giải giúp ha !!
ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a
=1001 . 20a . 1000 + 20a
Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7
nên (4 + a) chia hết cho 7 . Vậy a = 3
b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b
suy ra ab+ba chia het cho 11
c/
ab - ba = ( 10a + b ) - ( 10b +a ) = 9a - 9b = 9(a - b)
mà 9(a - b) chia hết cho 9
vậy ab - ba chia hết cho 9
Chứng minh rằng: nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37 ?
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Chứng minh rằng mỗi số tự nhiên abc chia hết cho 37 thì các số bca và cab chia hết cho 37.
Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!
Chứng minh rằng số tự nhiên có 3 chữ số là \(\overline{abc}\) và \(\overline{cab}\)chia hết cho 37 thì số \(\overline{bca}\) cũng chia hết cho 37