Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ thị duyên
Xem chi tiết
Thu Thảo Vũ
Xem chi tiết
Nguyễn Ngọc Quý
7 tháng 9 2015 lúc 9:30

Nhầm

\(A=\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{99}}\)

\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)

\(A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+......+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}

Vu Xuan Co
22 tháng 3 2017 lúc 5:56

bạn thiếu ĐPCM

Cao Đăng Đoàn
13 tháng 3 2019 lúc 17:33

a<1\2

Escper Diabolic
Xem chi tiết
kiune  ( ミ★тєαм ƒαи вιв...
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 15:30

\(\Rightarrow\left(x-1\right)^2-\left(2x-3\right)^2=0\\ \Rightarrow\left(x-1-2x+3\right)\left(x-1+2x-3\right)=0\\ \Rightarrow\left(2-x\right)\left(3x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)

kiune  ( ミ★тєαм ƒαи вιв...
22 tháng 10 2021 lúc 15:33
Escper Diabolic
Xem chi tiết
robert lewandoski
14 tháng 10 2015 lúc 20:10

ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

=>2B-B=\(1-\frac{1}{2^{99}}\)

mà 1/2^99>0 nên B<1 (đpcm)

Quân Tà Băng
Xem chi tiết
Jin Air
20 tháng 4 2016 lúc 19:52

3A= 1+ 1/3 + 1/3^2 + ... + 1/3^98

3A-A=1 + 1/3 + 1/3^2 + ... + 1/3^98 - 1/3 - 1/3^2 - 1/3^3 - .... - 1/3^99

2A= 1 - 1/3^99 < 1

=> A < 1/2

Nguyễn Hoàng Tuyền
Xem chi tiết
Lê Hương Giang
18 tháng 7 2018 lúc 16:21

3A = 1+1/3+1/3^2+...+1/3^99

3A-A=(1+1/3+...+1/3^99)-(1/3+1/3^2+...+1/3^99)

2A= 1-1/3^99

A  = (1-1/3^99)/2 < 1/2

=> A < 1/2

cô nàng Bạch Dương
Xem chi tiết
vũ minh đức
Xem chi tiết
Nguyễn Minh Quang
18 tháng 7 2021 lúc 20:38

ta có 

\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)

Vậy A=B

Khách vãng lai đã xóa