Nêu cách tính thể tích hlp và hhcn
Ai tick mk mk tick lại
Nêu những tính chất kủa phép nhân và phép cộng
Câu nèk mk bít nhưng vẫn đặt để m.n tick mk nha, mk sẽ tick bất kể đúng sai, chỉ cần k mk thì mk k lại
k mk đi, mk k lại nhé, chỉ cần k mk thui, mk sẽ k các bn bất kể đúng sai, k nhìu dzô, ở các câu trả lời kủa mk nữa
a, Tính chất giao hoán của phép cộng và phép nhân:
a + b = b + a ; a.b = b.a
Khi đổi chỗ các số hạng trong một tổng thì tổng không đổi.Khi đổi chỗ các thừa số trong một tích thì tích không đổi.b. Tính chất kết hợp của phép cộng và phép nhân:
(a + b) + c = a + (b + c); (a.b).c = a.(b.c);
c. Tính chất phân phối của phép nhân đối với phép cộng:
a.(b + c) = a.b + a.c
Muốn nhân một số với một tổng, ta có thể nhân số đó với từng số hạng của tổng, rồi cộng các kết quả lại.
d. Cộng với sô 0:
a + 0 = 0 + a = a
Tổng của một số với 0 bằng chính số đó.
e. Nhân với số 1:
a.1 = 1.a = a
Tích của một số với 1 bằng chính số đó.
tính V của HLP biết hiệu của Stp và Sxq là 162 cm2
Giúp mk nha nha nha :3
mk tick cho nha
Stp là diện tích 6 mặt của HLP đó. Sxq là diện tích 4 mặt của HLP đó. Vậy 162 cm2 là diện tích : 6-4=2 mặt của HLP đó. Vậy S 1 mặt của HLP đó là:162:2=81.Vì 81 = 9 nhân 9 nên cạnh HLP đó là 9. V của HLP đó là:9 nhân 9 nhân 9 = 729 cm
Thông cảm nha mình không có dấu nhân. k cho mình nha
Tính diện tích một hình vuông có cạnh là 15 ?
\(\text{Ai tick mk mk sẽ tick lại}\text{Ai tick mk mk sẽ tick lại}\)
Diện tích hình vuông là:
15x15=225
Đáp số:225
Bài giải
Diện k hình vuông là :
15 x 15 = 225 ( cm2 )
Đáp số :...........
Diện tích hình vuông là
15x15=225(?)
Đáp số :....
nêu cách xác định thể tích của 1 vật ko thấm nước
ai nhanh 3 tick
mai mk có tiết kiểm tra
- Dùng bình chia độ:
+Ước lượng thể tích vật cần đo để chọn bình chia độ có GHĐ và ĐCNN thích hợp
+Đổ chất lỏng vào bình chia độ với thể tích là V1
+ Bỏ vật cần đo vào bình chia độ, nước dâng lên thể tích là V2
+ Thể tích của vật là V2 - V1
- Dùng bình tràn
+ Đổ nước đầy đến miệng của bình tràn
+ Thả vật cần đo vào bình tràn, nước ở bình tràn sẽ chảy sang bình chứa
+ Đổ nước từ bình chứa vào bình chia độ, thể tích của nước trong bình chia độ là thể tích của hòn đá
* Đo bằng bình chia độ:
- Ước lượng thể tích cần đo để chọn bình chia độ có hình dạng, GHĐ, ĐCNN thích hợp.
- Đổ chất lỏng vào bình chia độ với thể tích là V1
- Thả vật cần đo vào bình chia độ, nước dâng lên với thể tích V2
- Thể tích của vật là V = V2 - V1
* Đo bằng bình tràn:
- Thả vật vào bình tràn, đồng thời hứng nước tràn ra vào bình chứa.
- Đo thể tích nước tràn ra bằng bình chia độ, đó là thể tích của vật cần đo.
B1 : Chuẩn bị bình chia độ phù hợp
B2 : đổ nước đầy bình chia độ, ghi kết quả mực nước đó
B3 : Thả vật rắn vào bình, ghi kết quả đó
B4 : Lấy kết quả sau trừ kết quả trước sẽ ra thể tịhs vật rắn ko thấm nước
Trên là cách bỏ vừa bình chia đọ nha
hk tốt Châu Giang
nêu công thức Góc giữa tiếp tuyến và một dây cung
ai tick mk mk tick lại
Góc giữa tiếp tuyến và một dây cung
Dạng 1: Sử dụng tính chất góc giữa tiếp tuyến và dây cung để giải một số bài toán cơ bản
Dạng 1.1: Sử dụng số đo góc bằng nhau để chứng minh
1.Cho tam giác ABC có đường tròn ngoại tiếp (O). Vẽ đường tròn (O’) tiếp xúc trong với (O) tại A và tiếp xúc với cạnh BC, CA, AB tại D, E, F. Cmr:
a) EF song song với BC.
b) AD là phân giác trong góc .
2. Cho hai đường tròn (O;R) và (O’;R’) tiếp xúc trong với nhau tại A (R > R’). Qua A kẻ đường thẳng cố định cắt (O’), (O) tại B, C tương ứng (khác A). Một đường thẳng thay đổi cắt (O’), (O) tại D, E tương ứng (khác A) ().
a) Cmr: BD//CE.
b) Biết AB = 2, AC = 3. Tìm GTNN của biểu thức .
3. Cho đường tròn (O) và một dây cung MN. Trên tiếp tuyến với (O) tại M, ta lấy điểm T sao cho MT = MN. Tia TN cắt (O) tại điểm thứ hai S. CMR: a) SM = ST.
b) .
4. Từ một điểm A ở ngoài đường tròn (O) ta kẻ tiếp tuyến AB tới (O) (B là tiếp điểm) và cát tuyến ADC không đi qua O (D nằm giữa A và C). Phân giác trong cắt DC tại E. Cmr: AB = AE.
5. Cho hình vuông ABCD. Vẽ cung tròn AC thuộc đường tròn tâm D bán kính DA và trên đó lấy điểm P. Gọi K là giao điểm của DP với nửa đường tròn đường kính AD (nằm ở trong hình vuông), gọi I là hình chiếu vuông góc của P lên AB. Cmr: PK = PI.
6. Cho đường tròn (O; R) và hai đường kính AB, CD vuông góc với nhau. Trên tia đối của tia CO lấy điểm S. Đường thẳng SA cắt đường tròn tại điểm thứ hai M. Tiếp tuyến với (O;R) tại M cắt CD tại P, BM cắt CD tại T.
a) Cmr: .
b) Biết . Hãy tính theo .
7. Cho hai đường tròn (O) và (O') ở ngoài nhau. Đường thẳng OO' cắt (O) và (O') tương ứng và theo thứ tự tại A, B, C, D. Kẻ tiếp tuyến chung ngoài EFcủa hai đường tròn (E thuộc (O), F thuộc (O')). Gọi M, N là giao điểm của cặp đường thẳng AE,DF và EB,FC tương ứng. CMR:
a) MENF là một hình chữ nhật.
b) MN vuông góc với AD.
c) .
8. Từ một điểm C ở ngoài đường tròn (O) ta kẻ hai tiếp tuyến CA, CB tới (O) ( A, B là tiếp điểm). Vẽ đường tròn (O’) đi qua C và tiếp xúc với AB tại B. (O’) cắt (O) tại điểm M (khác B). Cmr: AM đi qua trung điểm của BC (HD: Kéo dài AM cắt (O’) tại D, ta có ABDC là một hình bình hành)
9. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng. Đường thẳng AB cắt đường tròn ngoại tiếp tam giác BCD tại E ( khác B). Cmr: ACED là một hình bình hành.
10. Cho hai đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A. Một tiếp tuyến của (O) tại B cắt (O’) tại hai điểm phân biệt C, D (C nằm giữa B và D). Các tia CA, DA cắt (O) tai E, F tương ứng.
a) Cmr: EF//CD.
b) Gọi M là điểm chính giữa cung CD không chứa A. Tính số đo .
11. Cho đường tròn (O) và một dây cung AB cố định không là đường kính. Xét điểm C di chuyển trên cung lớn AB (C khác A, B). Gọi M, N lần lượt là hình chiếu vuông góc của C lên hai tiếp tuyến với (O) tại A, B tương ứng, H là hình chiếu vuông góc của C lên AB.
a) Cmr: .
b) Tìm điều kiện để
12. Cho đường tròn (O) và một dây cung AB cố định không là đường kính. Xét điểm C di chuyển trên cung nhỏ AB (C khác A, B). Gọi M, N lần lượt là hình chiếu vuông góc của C lên hai tiếp tuyến với (O) tại A, B tương ứng, H là hình chiếu vuông góc của C lên AB. Tìm vị trí của C để biểu thức nhỏ nhất.
13. Cho tam giác ABC vuông tại A có đường tròn ngoại tiếp (O) bán kính 10. Phân giác trong góc B cắt AC và tiếp tuyến tại C của (O) tại D, E tương ứng. Biết BD = 8.
a) Cmr: tam giác CDE cân tại C.
b) Tính độ dài BE.
14*. Cho đường tròn (O) và hai đường tròn nhỏ hơn nằm trong (O) tiếp xúc trong với (O) tại M, N tương ứng, cắt nhau tai hai điểm A, B và . Hai tia MA, MB cắt lại tương ứng tại C, D. Cmr: CD tiếp xúc với . (HD: Một tiếp tuyến chung của đi qua C và tiếp xúc với tại X . Cm: dựa vào bài 1)
15*.
Dạng 1.2: Sử dụng tính chất:
Bài toán cơ bản: Cho đường tròn (O: R) và điểm M ở ngoài (O). Từ M kẻ tiếp tuyến MT và cát tuyến MAB tới (O). Khi đó .
1. Cho tam giác ABC có đường tròn ngoại tiếp (O). Tiếp tuyến với (O) tại A cắt BC tại D. Cmr: . (HD: )
2. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng. Gọi M là giao điểm của đường thẳng AB và đường thẳng CD. Cmr: M là trung điểm của CD.
3. Cho góc xAy và đường tròn (O) tiếp xúc với hai tia Ax, Ay tại B, C tương ứng. Từ C kẻ đường thẳng (d) song song với Ax cắt (O) tại điểm thứ hai D; AD cắt (O) tại điểm thứ hai M, CM cắt AB tại N. CMR:
a) .
b) AN=BN.
4. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B. Từ một điểm M thay đổi trên (O) (M ở ngoài (O’)) kẻ tiếp tuyến MC tới (O’) (C thuộc (O’)). Cmr: là không đổi.
5. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B và một tiếp tuyến chung ngoài tiếp xúc với (O), (O’) tại C, D tương ứng (B gần đường thẳng CD hơn A). Từ A kẻ đường thẳng song song với CD cắt (O), (O’) tại các điểm thứ hai M, N tương ứng, hai đường thẳng MC, ND cắt nhau tại E. Hai đường thẳng BC, BD cắt MN tại P, Q tương ứng. Cmr:
a) A và E đối xứng nhau qua CD.
b) Tam giác EPQ cân tại E. (HD: Sử dụng kết quả bài 2 và bổ đề hình thang)
6. Cho hai đường tròn (O) và (O’) nằm ngoài nhau và một tiếp tuyến chung ngoài tiếp xúc với (O) và (O’) tại A, B tương ứng. Gọi C là điểm đối xứng B qua OO’. đường thẳng AC cắt (O) và (O’) tại các điểm thứ hai D, E tương ứng. Cmr:. (HD: Kẻ tiếp tuyến chung ngoài CF)
7. Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B. Tiếp tuyến với (O’) tại B cắt (O) tại điểm thứ hai C. Gọi I là trung điểm BC, đường thẳng AI cắt các đường tròn (O), (O’) tại các điểm thứ hai tương ứng D, E. Cmr: BDCE là một hình bình hành.
8. Cho tam giác ABC nhọn và (O) là đường tròn đường kính BC. Từ A kẻ hai tiếp tuyến AM, AN tới (O) (M, N thuộc (O)). Gọi D là hình chiếu vuông góc của A lên BC, E là giao điểm của MN và AD.
a) Cmr: E là trực tâm tam giác ABC. (HD: Gọi F là giao điểm thứ hai của AB và (O). Cm: )
b) Cmr: DA là phân giác trong góc .
9. Cho ba điểm A, B, C thẳng hàng theo thứ tự đó. Một đường tròn (O) thay đổi luôn đi qua B, C. Từ A kẻ hai tiếp tuyến AD, AE với (O) (D, E thuộc (O)).
a) Cmr: D chạy trên một đường tròn cố định.
b) Cmr: đường thẳng DE luôn đi qua một điểm cố định.
c) Gọi MN là một đường kính của (O) vuông góc với BC, đường thẳng AM cắt (O) tại điểm thứ hai K. Cmr: AB, DE, KN đồng quy.
Dạng 2: Sử dụng tính chất góc giữa tiếp tuyến và dây cung để chứng minh một đường thẳng tiếp xúc với một đường tròn
Bài toán cơ bản 1: Cho tam giác ABC nội tiếp đường tròn (O). Kẻ tia Ax khác phía với AB đối với đường thẳng AC. CMR: = khi và chỉ khi Ax tiếp xúc với (O).
Bài toán cơ bản 2: Cho tam giác ABC có đường tròn ngoại tiếp (O). Trên tia đối của tia CB lấy điểm D. CMR: AD tiếp xúc với (O) khi và chỉ khi .
Bài tập áp dụng
1. Cho tam giác ABC cân tại A. Đường trung trực của AB cắt tia đối của tia CB tại D. CMR: AB tiếp xúc với (ACD).
2. Cho hình thang ABCD với hai đáy AB,CD. CMR: BC tiếp xúc với đường tròn (ABD) khi và chỉ khi .
3. Cho tứ giác lồi ABCD có hai đường chéo cắt nhau tại O.
CMR: Đường tròn ngoại tiếp tam giác OCD tiếp xúc đường tròn ngoại tiếp tam giác OAB khi và chỉ khi ABCD.
4. Cho hình bình hành ABCD, . Đường tròn ngoại tiếp tam giác BCD cắt AC ở E. CMR: BD tiếp xúc với đường tròn (AEB).
5. Cho đường tròn (O). Từ một điểm M ở ngoài (O) ta kẻ hai cát tuyến MAB, MCD (theo thứ tự đó); kẻ dây CE song song với AB
a) CMR: =
b) CMR: AD.MB= MD.AE
c) CMR: EA tiếp xúc với đường tròn (MAD)
d) Cho AB= EC. CMR: nếu gọi I là giao điểm của EC và BD thì hai đường tròn (MAD)và (IED) tiếp xúc nhau tại D.
6. Cho tam giác ABC có phân giác trong AD. Xét đường tròn (O) đi qua A và tiếp xúc với BC tại D. Giả sử (O) cắt các cạnh AB, AC lần lượt tại E, F (E, F không trùng với A). CMR:
a) EF // BC.
b).
c) DF tiếp xúc với (ABD).
7. Cho tam giác ABC nhọn có đường cao AH. Gọi M, N tương ứng là trung điểm AB, AC.
a) MN tiếp xúc với hai đường tròn (HBM) và (HCN).
b) CMR: Các đường tròn (HBM), (HCN), (AMN) cùng đi qua một điểm K.
c) Đường thẳng HK đi qua trung điểm của MN.
8. Cho nửa đường tròn (O) đường kính BC và một điểm A trên nửa đường tròn (A khác B, C). Gọi H là hình chiếu của A lên BC. Trên nửa mặt phẳng bờ BC chứa A, dựng hai nửa đường tròn đường kính HB, HC, chúng lần lượt cắt AB, AC tại E, F (E khác B, F khác C).
a) CMR: AE.AB=AF.AC.
b) CMR: EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB, HC.
c) Gọi I, K tương ứng là các điểm đối xứng với H qua AB, AC. CMR: I, A, K thẳng hàng và AK tiếp xúc với (O).
d) Gọi M là giao điểm của đường thẳng IK và tiếp tuyến của (O) tại B. CMR: MC, AH, EF đồng quy.
9. Cho đường tròn (O) và hai điểm A, B cố định trên đó sao cho AB không là đường kính. Gọi M là điểm chính giữa cung nhỏ AB. Trên đoạn AB lấy hai điểm phân biệt C, D sao cho C ở giữa A, D và C, D khác A, B. Các tia MC, MD cắt (O) tại E, F tương ứng(E, F khác M). CMR
a) CEFD là một tứ giác nội tiếp.
b) MA tiếp xúc với đường tròn (ACE).
c) Nếu gọi lần lượt là tâm các đườn tròn (ACE), (BDF) thì khi C, D thay đổi, thỏa mãn điều kiện đã cho, thì hai đường thẳng luôn cắt nhau tại một điểm cố định.
10. Cho tam giác ABC vuông cân tại A có đường tròn ngoại tiếp (O). Xét điểm M thay đổi trên cung nhỏ AC (M khác A, C). Gọi D là giao điểm của hai đường thẳng AM và BC.
a) CMR: AM.AD không đổi.
b) Giả sử 2.AM = BC. Tính số đo các góc .
c) Tìm M để (2.AM + AD) nhỏ nhất.
d) CMR: Đường tròn (MCD) luôn tiếp xúc với một đường thẳng cố định.
e) CMR: Tâm I của đường tròn (MCD) luôn chạy trên một đường thẳng cố định.
11. Cho tam giác ABC cân tại A. Gọi (I) là đường tròn tiếp xúc với AB tại B và tiếp xúc với AC tại C. Gọi D là trung điểm AB. Tia CD cắt (I) tại E và (ABE) tại K (K khác E). CMR
a) AK//BC, BK//AC.
b) BC tiếp xúc với (ABE).
12. Cho hai đường tròn (O), (O’) cắt nhau ở A và B. Kẻ tiếp tuyến chung CC’(C thuộc (O), C’ thuộc (O’), A gần CC’ hơn B ) và kẻ đường kính CD của (O). Gọi E, F theo thứ tự là giao điểm của OO’ với C’D và CC’.
a) CMR: .
b) CMR: FA tiếp xúc với đường tròn (CAC’).
13. Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B. Kẻ tiếp tuyến chung ngoài EF của hai đường tròn (E thuộc (O), F thuộc (O') và E,A,F nằm cùng một phía đối với đường thẳng OO') cắt OO' tại I. CMR: AI tiếp xúc với đường tròn ngoại tiếp tam giác AEF.
Tính diện tích hình vuông có cạnh là 5
AI TICK MK MK TICK LẠI
Diện tích hình vuông đó là :
5 x 5 = 25 ( cm2 )
Đáp số :.........................
Tính diện tích hình vuông có cạnh là 3 m
AI TICK MK MK TICK LẠI
Diện tích hình vuông đó là :
3 x 3 = 9 ( m )
\(\text{ Đáp số :..............}\)m
AI K MK LÊN 50 ĐIỂM MK K NGƯỜI ĐÓ MỖI NGÀY 3 CÁI
Diện tích của hình vuông là
3 x 3 = 9 ( m2 )
Đ/S : 9 m2
Tính diện tích hình vuông có cạnh là 12345 m
AI TICK MK MK TICK LẠI
Diện tích hình vuông đó là :
12345 x 12345 = 152399025
Đáp số :............
diện tích là
\(12345\cdot12345=152399025\)\(\left(m^2\right)\)
dt hình vuông là:12345*12345=152399025
đ/s......
tk mk nhé mk tkk lại rùi
Tính diện tích hình vuông có cạnh là 15 m
AI TICK MK MK TICK LẠI
Diện tích hình vuông là
15 x 15 = 225 ( m^2 )
Đ/S :....
Diện tích hình vuông là :
15 x 15 = 225 ( m2 )
Đáp số : 225 m2
Diện tích hình vuông là :
15 x 15 = 225 ( m2 )
Đáp số :............m2