Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TXT Channel Funfun
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
alibaba nguyễn
26 tháng 6 2017 lúc 15:45

Đây mà toán lớp 5 à.

Áp dụng công thức

\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\)  ta được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)

l҉o҉n҉g҉ d҉z҉
26 tháng 6 2017 lúc 16:02

Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(=2.\frac{1}{2}-2.\frac{1}{51}\)

\(=1-\frac{2}{51}=\frac{49}{51}\)

doremi
10 tháng 7 2017 lúc 16:30

là số 49/51

-ZOZZ-
Xem chi tiết
Nguyễn Tuấn Anh
10 tháng 12 2021 lúc 7:25

????  nhầm lớp hả bạn

Khách vãng lai đã xóa
Lê Thành Công
Xem chi tiết
Đức Phạm
14 tháng 8 2017 lúc 5:50

Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)

  \(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)

  \(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)

   \(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)

 \(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)

Đức Phạm
14 tháng 8 2017 lúc 10:30

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)

nguyen thi van khanh
Xem chi tiết
Yến Nhi Libra Virgo HotG...
16 tháng 5 2017 lúc 20:10

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)

Ta có :

\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)

\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(A=2\times\frac{49}{102}\)

\(A=\frac{49}{51}\)

nguyen thi van khanh
16 tháng 5 2017 lúc 20:11

đề bài mk chỉ cho 50 thôi ko có 51 đâu

nên mk cho bạn 1k thôi nhé

Ngô Nhật Trang
16 tháng 5 2017 lúc 20:13

Ta có 2/2(1+2) + 2/2(1+2 +3 ) +............+2/2(1+2+3+4+.........+50)

=2/6 + 2/12 + 2/20 +......+2/2550

=2/2x3 + 2/3x 4 + ....+2/50x51

=2(1/2x3 + 1/3x4 + .......1/50 x 51 )

= 2( 1-1/2+1/2-1/3+.....+1/50-1/51)

=2( 1-1/51)

=2 x 50/51

=100/51

MK NHANH NÈ ỦNG HỘ ĐI

Nguyễn Minh Hiền
Xem chi tiết
Nguyễn Phương Thảo
30 tháng 3 2016 lúc 22:00

A = 1/ 1+1/22+1/32+. . . +1/50< 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50

<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50

<=> A< 1 + 1 - 1/50 = 2 - 1/50 

Vậy A < 2

Nhớ k nhé bạn ^^

Nguyễn Văn Công
Xem chi tiết
Lê Quang Thái
Xem chi tiết
Nguyễn Huy Hải
23 tháng 10 2015 lúc 22:58

Ở, lớp 5 học gì mà làm bài hóc búa thấy sợ

Hoàng Xuân Ngân
23 tháng 10 2015 lúc 23:10

hai người này hêt nói....

Trương Hoàng Lân
Xem chi tiết
Huỳnh Thiếp Thắng
3 tháng 5 2016 lúc 20:46

Ta có:\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(=\frac{1}{1.1}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

\(=\frac{1}{1}-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0\)

Do 0<2

Nên A<2