Tính nhanh
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+50}\)
Trần Thùy Dung đâu ! giúp
Tính nhanh :
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+50}\)
Giúp mk nha !
Tính nhanh:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+...+50}\)
Đây mà toán lớp 5 à.
Áp dụng công thức
\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\) ta được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)
Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{51}\)
\(=1-\frac{2}{51}=\frac{49}{51}\)
tính nhanh phân số:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......=\frac{1}{1+2+3+.....+50}\)
???? nhầm lớp hả bạn
Tính nhanh :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+50}\)
Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)
\(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)
\(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)
Tính \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+4+...+50}\)
ai nhanh mk k cho 2 cái luôn
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)
Ta có :
\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)
\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=2\times\frac{49}{102}\)
\(A=\frac{49}{51}\)
đề bài mk chỉ cho 50 thôi ko có 51 đâu
nên mk cho bạn 1k thôi nhé
Ta có 2/2(1+2) + 2/2(1+2 +3 ) +............+2/2(1+2+3+4+.........+50)
=2/6 + 2/12 + 2/20 +......+2/2550
=2/2x3 + 2/3x 4 + ....+2/50x51
=2(1/2x3 + 1/3x4 + .......1/50 x 51 )
= 2( 1-1/2+1/2-1/3+.....+1/50-1/51)
=2( 1-1/51)
=2 x 50/51
=100/51
MK NHANH NÈ ỦNG HỘ ĐI
Cho
\(A=\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
Chứng minh A < 2
Nhanh giúp mk nha , ai nhanh nhất chính xác nhất mk sẽ tick
A = 1/ 12 +1/22+1/32+. . . +1/502 < 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50
<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50
<=> A< 1 + 1 - 1/50 = 2 - 1/50
Vậy A < 2
Nhớ k nhé bạn ^^
tính giá trị biểu thức A=\(\orbr{\begin{cases}\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{40}+\frac{1}{50}\\\frac{100}{1}+\frac{49}{2}+\frac{48}{3}+...+\frac{2}{49}+\frac{1}{50}\end{cases}}\)
ai có tâm giúp mình, với mình hứa cho 2 tick[no joke]
Mọi người giúp mình tính nhanh cái nhé:
Tính nhanh
1+\(\frac{1}{1+\frac{1}{2}}+\frac{1}{1+\frac{1}{2}+\frac{1}{3}}+\frac{1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}+........+\frac{1}{1+\frac{1}{2}+.......+\frac{1}{100}}\)
Ở, lớp 5 học gì mà làm bài hóc búa thấy sợ
Cho A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Chứng minh A < 2
Gấp, giải giúp, tick nhanh
Ta có:\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=\frac{1}{1.1}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
\(=\frac{1}{1}-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)
\(=0\)
Do 0<2
Nên A<2