Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Anh
Xem chi tiết
Thichhoctoan
Xem chi tiết
Lê Hồ Trọng Tín
10 tháng 8 2019 lúc 19:13

Pt tương đương:

\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)

\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)

(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4

(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3

 bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận

Upin & Ipin
10 tháng 8 2019 lúc 19:27

mik ko hieu vi sao ban suy ra duoc (1) va (2)

bn co the viet ro ra duoc ko ?

theo mik thay thi 2 pt do dau co tuong duong

Lê Hồ Trọng Tín
10 tháng 8 2019 lúc 19:30

Mình chuyển vế rồi lập phương, do  4x-3-(3x+1)=2x-9+(5-x) nên mình giản bỏ luôn, hơi tắc xíu

le thi ha
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
Nguyễn Tiến Dũng
8 tháng 10 2018 lúc 20:34

Căn bậc hai. Căn bậc ba

nguyen ba gia bao
Xem chi tiết
•↭长ɦáทɦ•☪ôทջՇúa
Xem chi tiết
Tiến Vũ
Xem chi tiết
Triệu Thị Thu Thủy
30 tháng 3 2018 lúc 18:57

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

Tiến Vũ
30 tháng 3 2018 lúc 19:25

minh lop 5 dang chi minh muon nick cua minh

✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 4 2018 lúc 6:29

Ta có : x(2x + 3)2 - 4x2 + 9 = 0 

<=> x(2x + 3)2 - (4x2 - 9) = 0 

<=> x(2x + 3)2 - (2x - 3)(2x + 3) = 0 

<=> (2x + 3)[x(2x + 3) - 2x + 3] = 0 

<=> (2x + 3)(2x2 + 3x - 2x + 3) = 0 

<=> (2x + 3)(2x2 + x + 3) = 0 

<=> 2x + 3 = 0 (vì 2x2 + x + 3 > 0 với mọi x)

<=> 2x = -3

<=> x = -3/2

huynh thanh tuyen
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 11 2018 lúc 17:36

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)