Giai phuong trinh:
b, x2 +4x +5=\(2\sqrt[]{2x+3}\)
giai phuong trinh: \(\sqrt[3]{x^2+4x+3}+\sqrt[3]{4x^2-9x-3}=\sqrt[3]{3x^2-2x+2}+\sqrt[3]{2x^2-3x-2}\)
giai phuong trinh \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Pt tương đương:
\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)
\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)
(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4
(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3
bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận
mik ko hieu vi sao ban suy ra duoc (1) va (2)
bn co the viet ro ra duoc ko ?
theo mik thay thi 2 pt do dau co tuong duong
Mình chuyển vế rồi lập phương, do 4x-3-(3x+1)=2x-9+(5-x) nên mình giản bỏ luôn, hơi tắc xíu
giai bat phuong trinh \(\sqrt{x+2x^2}\)+\(\sqrt[3]{x+4x^3}\ge\)5-2x-\(\frac{1}{x}\)
Giai phuong trinh
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)
giai phuong trinh : \(2x^2\left(5-\sqrt[3]{5x-x^3}\right)=2x^3+17x-8\)
Giai phuong trinh sau
\(X\sqrt{2x-1}-\sqrt{4x^2-1}-0\)
giai phuong trinh
x*(2x+3)2 -4x2+9=0
\(x-\sqrt{x-3}-5=0\)
\(x^3-4x^2-3x+6=0\)
\(3x^3+4x^2-5x-6=0\)
\(\sqrt{x^2+4x+8}+\sqrt{x^2+4x+4}=\sqrt{2\cdot\left(x^2+4x+6\right)}\)
Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)
Ta có : x(2x + 3)2 - 4x2 + 9 = 0
<=> x(2x + 3)2 - (4x2 - 9) = 0
<=> x(2x + 3)2 - (2x - 3)(2x + 3) = 0
<=> (2x + 3)[x(2x + 3) - 2x + 3] = 0
<=> (2x + 3)(2x2 + 3x - 2x + 3) = 0
<=> (2x + 3)(2x2 + x + 3) = 0
<=> 2x + 3 = 0 (vì 2x2 + x + 3 > 0 với mọi x)
<=> 2x = -3
<=> x = -3/2
\(\sqrt{x+2+3\sqrt{ }2x-5}+\sqrt{x-2-\sqrt{ }2x-5}=2\sqrt{2}\) 2\(\sqrt{2}\) giai phuong trinh
giai phuong trinh \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}+\dfrac{2005}{2006}\)
\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)
\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)
Phương trình tương đương:
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)
TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)
TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)
TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)
Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)