cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 ; n chia hết cho 5
Để n chia hết cho 2 => a + b chẵn
Trường hợp 1:
a chẵn => b chẵn = {0;2;4;6;8}
Trường hợp 2 :
b lẻ => a lẻ = {1;3;5;7;9}
Như vậy để a và b chia hết cho 2 thì a + b chẵn.
Để n chia hết cho 5
=> a + b chia hết cho 5
=> a + b có tận cùng = 0;5
=> (a ; b) = {(1;4)(4;1)(3;2)(2;3)(5;0)(0;5)
Như vậy để n chia hết cho 5 thì a + b có tận cùng = 0 hoặc 5
cho n biết n = 4a + 5b . Tìm các số a,b để n chia hết cho 2 và cho 5
Cho a , b biết ( a , b € N ) biết 4a +5b chia hết 23 hãy chứng minh 7a + 3b chia hết cho 23
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
Bài 1: Ch a,b thuộc Z t/m:(17a+5b).(5a+17b) chia hết cho 11.CMR:: (17a+5b)(5a+17b) chia hết cho 121
Bài 2: Cho a,b thuộc N . CMR: ab(a^2-b^2)(4a^2-b^2) chia hết cho 5
Bài 3: Cho a,b thuộc Z.CMR: ab(a^2+b^2)(a^2-b^2) chia hết cho 30
Bài 4: Cho n thuộc Z.CMR: n^6-n^2 chia hết cho 60
CÁC BẠN GIÚP MÌNH NHÉ
1) Cho A= (3n - 13)/(n - 1) (n thuộc Z )
a) Tìm n nguyên để A nguyên.
b) Tìm n nguyên để A là phân số tối giản.
2. Cho a,b thuộc N. Chứng minh rằng: 4a + b chia hết cho 5 và a + 4b chia hết cho 5
Cho a,b,c thuoc N, biết (4a+5b+7c) chia het cho 11,cmr (5a+9b+6c) chia hết ch0 11. Các thán giúp em vs
Tìm số tự nhiên để:
a, 4a - 7 chia hết cho n-1
b. 10n-2 chia hết cho n-2
Cho a,b,c thuộc N. Biết (4a+5b+7c) chia hết cho 11. CMR (5a+9b+6b) cjia hết cho 11
Cho a;b thuộc N thỏa mãn 7a+3b chia hết cho 23
CMR 4a+5b chia hết cho 23
nếu 4a + 5b chia hết cho 23 (1)
(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)
(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23
\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23
(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))
Vậy 4a + 5b chia hết cho 23
Giải:
Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)
\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)
\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)
Vậy \(4a+5b⋮23\) (Đpcm)