Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Chi Hieu
Xem chi tiết
Trần Anh
Xem chi tiết
Duong Yen Ngoc
Xem chi tiết
Lục Vân Ca
Xem chi tiết
_Guiltykamikk_
11 tháng 8 2018 lúc 4:20

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Với  \(x=3\)( thỏa mãn ĐKXĐ ) ta có  \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)

c) A ở đâu ???? '-' 

Nguyễn Tấn Khoa
Xem chi tiết
Long nguyen van
11 tháng 5 2017 lúc 19:22

moi tay

Huyen Trang Luong
8 tháng 6 2017 lúc 9:41

giải giùm mình bài 5 với

Hồ Nguyễn Quốc  Hưng
25 tháng 6 2018 lúc 15:11

mình ko biết

My Love
Xem chi tiết
Lý Đại Huy
Xem chi tiết
tuấn lê
Xem chi tiết
djfhfirir
Xem chi tiết
Ngọc Vĩ
14 tháng 7 2016 lúc 22:06

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:06

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)

Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 22:14

2)a) \(P=\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

\(=\frac{a-2\sqrt{a}+1}{a+1}:\frac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{a+1}.\frac{\left(a+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}=\sqrt{a}-1\)

b) \(19-8\sqrt{3}=\left(\sqrt{3}-4\right)^2\Rightarrow P=\sqrt{\left(\sqrt{3}-4\right)^2}-1=4-\sqrt{3}-1=3-\sqrt{3}\)

c) P < 1 <=> \(\sqrt{a}-1< 1\Leftrightarrow a< 4\)

Kết hợp với điều kiện : \(P< 1\Leftrightarrow\hept{\begin{cases}0< a< 4\\a\ne1\end{cases}}\)