so sánh hai phân số sau :
\(\frac{63}{128}\)và\(\frac{2008}{2009}\)
So sánh hai phân số sau : \(\frac{2009.2009+2008}{2009.2009+2009}\)và \(\frac{2009.2009+2009}{2009.2009+2010}\)
\(\frac{2009.2009+2008}{2009.2009+2009}=\frac{2009.2009+2009}{2009.2009+2009}-\frac{1}{2009.2009+2009}=1-\frac{1}{2009.2009+2009}\)
\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2010}{2009.2009+2010}-\frac{1}{2009.2009+2010}=1-\frac{1}{2009.2009+2010}\)
\(\text{Vì }2009.2009+2009\frac{1}{2009.2009+2010}\)
\(\text{Hay }1-\frac{1}{2009.2009+2009}
\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2008+1}{2009.2009+2009+1}\)
Đặt 2009.2009+2008 là a; 2009.2009+2009 là b. Ta so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Qui đồng mẫu số 2 phân số trên
\(\frac{a}{b}=\frac{a\left(b+1\right)}{b\left(b+1\right)}=\frac{a.b+a}{b.\left(b+1\right)}\)
\(\frac{a+1}{b+1}=\frac{\left(a+1\right).b}{b\left(b+1\right)}=\frac{a.b+b}{b\left(b+1\right)}\)
Vì 2008 < 2009
=> 2009.2009+2008 < 2009.2009+2009
=> a < b
=> a.b+a < a.b+b
=> \(\frac{a.b+a}{b.\left(b+1\right)}
\(\frac{2009.2009+2008}{2009.2009+2009}=\frac{2008}{2009}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009}{2010}\)
\(1-\frac{2009}{2010}=\frac{1}{2010}\)
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh \(\frac{2008}{2009}+\frac{2009}{2010}và\frac{2008+2009}{2009+2010}\)
So Sánh
\(\frac{2007}{2008}+\frac{2008}{2009}\)và \(\frac{2007}{2008}+\frac{2008}{2009}\)
\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)\(=\)\(\frac{2007}{2008}\)\(+\)\(\frac{2008}{2009}\)
k mk nha!!! *o~
\(\frac{2007}{2008}+\frac{2008}{2009}=\frac{2007}{2008}+\frac{2008}{2009}\)
nha ^_^
Nguyễn Vân AnhMọi người giúp mjk cách lm nữa nhé
Thank moj ng nhìu
so sánh \(\frac{2009^{2008}+1}{2009^{2009}+1}\)và \(\frac{2009^{2008}+5}{2009^{2008}+9}\)
So sánh \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\)và \(\sqrt{2008}+\sqrt{2009}\)
Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)
Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)
\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)
Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)
so sánh hai phân số sau: 10^2008+1/10^2009+1 và 10^2009+1/ 10^2010+1