Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Trang
Xem chi tiết
Naruto
10 tháng 4 2022 lúc 15:34

A>B do A>4 cònB<4

Nguyễn Đức Minh
Xem chi tiết
Nobi Nobita
12 tháng 5 2020 lúc 16:57

Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)

Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)

Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)

\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)

hay \(10A>10B\)\(\Rightarrow A>B\)

Vậy \(A>B\)

Khách vãng lai đã xóa
Mai Tú Quỳnh
12 tháng 5 2020 lúc 17:11

Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)

Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)

Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)

\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

Làm khác bạn kia 1 xíu à

Khách vãng lai đã xóa
Ngoc Bảo
Xem chi tiết
 Phạm Trà Giang
26 tháng 3 2019 lúc 18:40

\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)

\(=1+\frac{18162}{10^{2017}+2018}\)

\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)

\(=1+\frac{18162}{10^{2018}+2018}\)

Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)

=> 10A > 10B

=> A > B

Hoàng Xuyên Chi
Xem chi tiết
nguyễn vũ ngọc mai
6 tháng 5 2017 lúc 20:53

A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)\(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)

B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)\(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B

Vậy A>B

Hoàng Xuyên Chi
7 tháng 5 2017 lúc 14:48

Cảm ơn bạn nhìu nhé.

Vũ Ngọc Hải My
Xem chi tiết
Nguyễn Thị Bích Hường
Xem chi tiết
Nguyễn Thị Bích Hường
15 tháng 5 2020 lúc 21:38

nhanh lên các bn mik cần gấp

Khách vãng lai đã xóa
thungan2102006
Xem chi tiết
Lê Quỳnh Trang
9 tháng 5 2018 lúc 22:19

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

Lan Nguyễn Thị
9 tháng 5 2018 lúc 22:22

k đúng cho mình đi, mình giải cho.

Your best friend
Xem chi tiết
Phong hoa tuyết nguyệt
12 tháng 5 2018 lúc 16:44

Nhỏ hơn 

Alice Sophia
Xem chi tiết
Kaori Miyazono
11 tháng 5 2017 lúc 18:05

Ta có : \(10.A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

\(10.B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1\)và \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)hay \(A>B\)

Vậy \(A>B\)

Nguyễn Đình Mạnh
11 tháng 5 2017 lúc 17:50

a hơn b

a hơn b

a hơn b 

chúc học giỏi