rút gọn:
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a}^3-\sqrt{b}^3}{a+b+\sqrt{ab}}\).Rút gọn
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a}^3-\sqrt{b}^3}{a+b+\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a+b+\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{a}-\sqrt{a}+\sqrt{b}+\sqrt{b}\)
\(=2\sqrt{b}\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)
\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)
Điều kiện : a, b\(\ge0\)
Rút gọn:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
Ta có:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^3\left(\sqrt{a}-\sqrt{b}\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a\sqrt{a}-3a\sqrt{b}+3\sqrt{a}b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a-3b}{a-b}\)
\(=3\)
=.= hok tốt!!
\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-b}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+b}\)
a) Rút gọn Q
rút gọn bt \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+21\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
Rút gọn biểu thức
\(\frac{\frac{\left(a-b\right)3}{\left(\sqrt{a}-\sqrt{b}\right)3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a}^3-\sqrt{b}^3}{a+b+\sqrt{ab}}\) rút gọn
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a}^3-\sqrt{b}^3}{a+b+\sqrt{ab}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a+b+\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{a}-\sqrt{a}+\sqrt{b}+\sqrt{b}=2\sqrt{b}\)
Rút gọn biểu thức :\(\frac{\sqrt{a^3}-\sqrt{b^3}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}:\frac{a^{-2}-b^{-2}}{a^{-1}-b^{-1}}\)