\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
Ta có :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A=\frac{2^{10}-1}{2^{10}}\)
\(A=\frac{1024-1}{1024}\)
\(A=\frac{1023}{1024}\)
Vậy \(A=\frac{1023}{1024}\)
Chúc bạn học tốt ~
Đặt tổng trên là A.
Ta có
A x 2 = 1+ 1/2+1/4+1/8+ 1/16+1/32+ 1/64+ 1/128 + 1/256 + 1/512
Ax2 - A = 1+ 1/2+1/4+1/8 +1/16 + 1/32 +1/64+ 1/128 + 1/256+ 1/512 - ( 1/2 + 1/4 +1/8+1/16+1/32+1/64 + 1/128+ 1/256 + 1/512+ 1/1024)
A = 1+ 1/2 +1/4+1/8+1/16+1/32+1/64+1/128+1/256 + 1/512 - 1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512- 1/1024
A = 1 - 1/ 1024 = 1023/1024
Tính
1) \(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
2) \(\frac{1}{3}-\frac{1}{8}-\frac{1}{54}-\frac{1}{108}-\frac{1}{180}-\frac{1}{270}-\frac{1}{378}\)
3)\(3-3^2+3^3-3^4+....+3^{2015}-3^{2016}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\)
A = \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{8}\) +... + \(\frac{1}{512}\)
A = [ 1 - \(\frac{1}{2}\)] + [ \(\frac{1}{2}\) - \(\frac{1}{4}\) ] + [\(\frac{1}{4}\) - \(\frac{1}{8}\)] + ..... + [\(\frac{1}{256}\) - \(\frac{1}{512}\)]
Xóa bỏ các số trùng lặp , ta có :
A = 1 - \(\frac{1}{512}\)
A = \(\frac{511}{512}\)
Tham khảo nha http://olm.vn/hoi-dap/question/98942.html
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{1}-\frac{1}{512}\)
\(=\frac{511}{512}\)
Tính A= \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...........+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)
#)Giải :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(\Rightarrow2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(\Rightarrow2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=\frac{1}{2^{11}}-\frac{1}{2}\)
\(\Rightarrow A=-\frac{1023}{2048}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
quy đồngcác phân số lấy mẫu số là 512 .ta có tử số là
256 +128 + 64 +32 +16 +8 +4 +2 +1 =495
A =\(\frac{495}{512}\)
cho hỏi làm thế nào để nó ra phân số như thế kia zạ
A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
Chúc bạn học giỏi nha!
A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
\(=1-\frac{1}{1024}\)
\(=\frac{1023}{1024}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}.\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
<=> \(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\)
<=> \(2A-A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{256}+\frac{1}{512}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)
<=> \(A=1-\frac{1}{1024}\)
<=> \(A=\frac{1023}{1024}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}+\frac{1}{512}\)
A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
Tính nhanh tổng sau:
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)
BẤM ĐÚNG NHÉ
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=\frac{1}{2}\times2+\frac{1}{4}\times2+\frac{1}{8}\times2+...+\frac{1}{512}\times2+\frac{1}{1024}\times2\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)