Tính
V=\(4.5^{100}.\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)1
Tính \(V=4.5^{100}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{100}}\right)+1\)
Tinh
\(V=4.5^{100}\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+....+\frac{1}{5^{100}}\right)+1\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
\(4A=1-\frac{1}{5^{100}}\)
\(A=\frac{1-\frac{1}{5^{100}}}{4}\)
\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)
\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)
=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(5^{100}-1\right)+1\)
\(V=5^{100}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)
\(B=4.5^{100}.\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)
Tính :
C = \(4.5^{100}\left(\frac{1}{5}+\frac{1}{5^2}+....+\frac{5}{5^{100}}\right)+1\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính:
\(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)
Tính:
\(4.5^{100}.\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)
Ai nhanh nhất và đúng sẽ được 3 tick
\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)
\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)
\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)
\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)
\(5S=5^{100}+5^{99}+5^{98}+...+5\)
\(5S-S=5^{100}-4\)
\(4S=5^{100}-4\)
\(S=\frac{5^{100}-4}{4}\)
\(\text{Quay lại bài toán ta có : }\)
\(4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}+1=\right)\) \(4\cdot\left(\frac{5^{100}-4}{4}\right)+1\)
\(=5^{100}-4+1\)
\(=5^{100}-3\)
\(\text{Mình nghĩ chắc cách làm này đúng rồi đó ! Bạn tham khảo nha ! Bài mình tự nghĩ đó ! Nếu có sai sót gì bạn tự chỉnh nha !}\)
bn giải thích cho mk đoạn \(5S-S=5^{100}-4\)đc ko sao lại trừ 4
Sorry ! Mình làm sai đoạn cuối ! Mình làm lại nha !
\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)
\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)
\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)
\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)
\( 5S=5^{100}+5^{99}+5^{98}+...+5\)
\(5S-S=\left(5^{100}+5^{99}+5^{98}+...+5\right)-\left(5^{99}+5^{98}+5^{97}+...+1\right)\)( Từ đó ta thấy chung các thừa số => ta xóa các thừa số đó đi )
\(S=5^{100}+5-1\)
\(S=5^{100}+4\)
\(\text{Quay lại bài toán ta có : }\)
\(4\cdot( \frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\text{ )}+1=4\cdot\frac{5^{100}+4}{4}+1\)
\(=5^{100}+4+1\)
\(=5^{100}+5\)
Tính giá trị biểu thức:
\(A=\frac{\frac{16}{10}:\left(1\frac{3}{5}\times \frac{5}{4}\right)}{\frac{64}{100}-\frac{1}{25}}+\frac{\left(\frac{108}{100}-\frac{2}{25}\right):\frac{4}{7}}{\left(5\frac{5}{9}-2\frac{1}{4}\right)\times 2\frac{2}{17}}+\frac{3}{5}\times \frac{1}{2}:\frac{2}{5}\)
thực hiên các phép tính tính :
a) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)