chứng tỏ đa thức 2x^4 +10x +6 không có nghiệm
giúp mình nha ~(T^T)~
Bài 1. M = 2x^4 - 4x^2 + 10x + 6
Chứng tỏ M(x) không có nghiệm.
Mong mọi người giải giúp em trai mình ^^
TA có :
\(2x^4\ge0;4x^2\ge0;10x\ge0\)
\(\Rightarrow2x^4-4x^2+10x+6\ge0\ge6\)
=> M(x) không có nghiệm
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Tìm nghiệm của đa thức sau P(x)=2x+6
b) Chứng tỏ đa thức M(y)=2y^4+3y^2+1 không có nghiệm
a) 2x+6=0 => 2x=-6 => x=-6:2=-3
ĐS: x=-3
b) Ta có:
M(y)=2y4+3y2+1=y4+2y2+1+y4+y2=(y2+1)2+y2(y2+1)=(y2+1)(y2+1+y2)=(y2+1)(2y2+1)
Nhận thấy; y2+1 và 2y2+1 luôn lớn hơn 1 với mọi y
=> M(y) lớn hơn 1 với mọi y => Đa thức M(y) không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Chứng tỏ đa thức M(x) = 2x^4 + 3x^2 + 6 không có nghiệm
ta có 2x ^ 4 >= 0 với mọi x
3x ^ 2 >= 0 với mọi x
suy ra: 2x^4 + 3x ^2 >= 0
2x^4 + 3x ^2 +6 >= 6 > 0
hay M(x) > 0
vậy đa thức M(x) vô nghiệm
chứng tỏ mỗi hạng tử trên đều lớn hơn 0
chứng minh đa thức :
2x4+ x2+2 không có nghiệm
giúp mình nha các bạn ơi
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
\(2x^4+x^2+2=0\) Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(t^2+t+2=0\)
Vậy đa thức vô nghiệm do delta :(( < 0
Chứng tỏ rằng đa thức A(x) = x2+2x+2015 không có nghiệm với mọi x
giúp mình với !!!!!!
Ta có : \(A\left(x\right)=x^2+2x+2015=x^2+2x+1+2014\)
\(=\left(x+1\right)^2+2014>0\forall x\)do \(\left(x+1\right)^2\ge0\forall x;2014>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
cho đa thức f(x)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4
chứng tỏ đa thức trên không có nghiệm
Chứng tỏ rằng đa thức:\(x^2+4x+5\) ko có nghiệm.
Giúp mình nhanh nha!
Chứng tỏ rằng đa thức:\(x^2+6x+10\) ko có nghiệm.
Giúp mình nhanh nha!
Thanks!
x2+4x+5=x2+4x+4+1=(x+2)2+1 >= 0+1 =1>0 do đó đa thức trên ko có nghiệm
x2+6x+10=x2+6x+9+1=(x+3)2+1 >=0+1=1>0 do đó đa thức trên ko có nghiệm
Câu 1 : Tìm nghiệm của đa thức f(x)= x^2+2x-3
Câu 2 : Chứng minh đa thức q(x)=x^2-10x+29 không có nghiệm !
Giúp mk với !
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
3 k nha bạn tốt quá mình đag cần gấp :)