Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Anh
Xem chi tiết
Jess Nguyen
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 3 2022 lúc 22:32

-Kẻ đường phân giác AD của △ABC.

-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)

\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)

Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)

\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)

-Xét △ADC và △BAC có:

\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)

\(\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△ADC∼△BAC (g-g).

\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)

-Xét △ABC có: AD là phân giác (gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)

\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)

Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)

\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\left(AB+AC\right).AC=BC^2\)

\(\Rightarrow AC^2+AB.AC=BC^2\)

Huyền Trần
Xem chi tiết
Nameless
Xem chi tiết
Le Van Hung
Xem chi tiết
Vũ Đoàn
Xem chi tiết
Trần Huy Hoàng
Xem chi tiết
Thanh Tùng DZ
6 tháng 1 2018 lúc 20:23

A B C H 60 độ

Kẻ CH \(\perp\)AB tại H ( H \(\in\)AB ) và HA + HB = AB

Xét \(\Delta\)AHC vuông tại H có : \(\widehat{A}\)\(60^o\)\(\Rightarrow\widehat{ACH}=30^o\)

Ta chứng minh được : AH = \(\frac{1}{2}AC\)( cạnh đối diện góc 30 độ bằng 1/2 cạnh huyền )

Áp dụng đính lí Py-ta-go vào tam giác vuông AHC có :

AC2 = HA2 + HC2

\(\Rightarrow\)HC2 = AC2 - HA2

hay HC2 = AC2 - \(\left(\frac{AC}{2}\right)^2\)\(\frac{3}{4}AC^2\)

Áp dụng định lí Py-ta-go BHC có :

BC2 = CH2 + HB2 = \(\frac{3}{4}AC^2+\left(AB-AH\right)^2\)

\(=\frac{3}{4}AC^2+\left(AB-\frac{1}{2}AC\right)^2\)

\(=\frac{3}{4}AC^2+AB^2-2AB.\frac{AC}{2}+\left(\frac{1}{2}AC\right)^2\)

\(=AC^2+AB^2-AB.AC\)

zZz Cool Kid_new zZz
25 tháng 6 2019 lúc 16:10

Câu hỏi của nguyen thi bao tien - Toán lớp 7 - Học toán với OnlineMath:Anh tham khảo ở đây.

Nguyễn Thị Huyền Chi
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Nguyễn Duy Anh
13 tháng 11 2020 lúc 23:53

Định lí hàm số côsin

Khách vãng lai đã xóa