tính nhanh : 1+1+1+1+2+2+2+2+3+3+3+3+4+4+4+4 =
Tính nhanh
A= 1+ 1/2 (1+2) +1/3 (1+2+3) +1/4 (1+2+3+4) +...+ 1/16 (1+2+3+4+...+16)
A=1+1/2x3+1/3X6+1/4X10+...+1/16X136
A=1+3/2+2+5/2+3+...+17/2
A=2/2+3/2+4/2+5/2+6/2+...+17/2
A=2+3+4+5+...+16+17/2
A=(2+17)x16:2/2
A=19x16:2/2
A=304:2/2
A=152/2
A=76
****
Tính nhanh
( 1 + 1\(\frac{1}{4}\)+ 1 1/2 + 1 1/3 + 2 + 2 1/4 + 2 1/2+ 2 3/4 + ... + 4 3/4) : 23
tính nhanh
11211-1-1-1-2-2-2-2-3-3-3-4-4-4-5-5-5-6-7-7-65-4-3-2-34-5-3-3-4
11211 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 4 - 4 - 4 - 5 - 5 - 5 - 6 - 7 - 7 - 65 - 4 - 3 - 2 - 34 - 5 - 3 - 3 - 4
= 11211 - (1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + 5 + 5 + 6 + 7 + 7 + 65 + 4 + 3 + 2 + 34 + 5 + 3 + 3 + 4)
= 11211 - 190
= 11021
GIÚP MINK VS CẢM ƠN NHÌU
TÍNH NHANH
1-1/2+2-2/3+3-3/4+4-1/4-3-1/3-2-1/2-1
\(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-2.\frac{1}{2}-\left(\frac{2}{3}+\frac{1}{3}\right)-\left(\frac{3}{4}+\frac{1}{4}\right)\)
\(=4-1-1-1=1\)
1)Tính nhanh: A=1+3+3^2+3^3+3^4+...+3^100
B= 1+4^2+4^4+4^6+...+4^100
2) Cho biết 1^2+2^3+3^2+4^2+...+10^2= 385
Tính a) S1= 2^2+4^2+...+20^2
. b) S2= 100^2+200^2+...1000^2
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Tính nhanh 5×(-2)²×(3/4)²-4×(-2)×3/4+1/2×(-2)-3×3/4
\(=5\cdot4\cdot\dfrac{9}{16}-4\cdot\left(-2\right)\cdot\dfrac{3}{4}+\dfrac{1}{2}\cdot\left(-2\right)-\dfrac{9}{4}\)
\(=5\cdot\dfrac{9}{4}+4\cdot4\cdot\dfrac{3}{4}-1-\dfrac{9}{4}\)
\(=\dfrac{45}{4}-\dfrac{9}{4}+4\cdot3-1=9+12-1=20\)
tính nhanh : 1 + [1 +2 ] + [1 +2 +3 ] + [1 + 2 +3 +4 ] + .... + [1 + 2 +3 +4 +.....+100 ]
Tính nhanh A = 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+...+16)
tính nhanh A= 1+1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+ 1/16(1+2+3+...+16)
ta có
A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)
xét tổng S = 1+2+3+4+5+......+n = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)
ta có
A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)
A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)
A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)
A = \(1+\frac{151}{2}\)
A = \(\frac{153}{2}\)