1) chứng tỏ rg:
a) (\(^{8^5}\)+ \(2^{11}\)) chia hết cho 17
b) (\(^{69^2}\)- 69. 5 ) " 32
Bài 1:
chứng tỏ rằng
8 mũ 5 +2 mũ 11 chia hết cho 17
69 mũ 2 trừ 69 nhân 5 chia hết cho 32
8 mũ 7 trừ 2 mũ 18 chia hết cho 14 ( làm đc 1 like)
85 + 211 = (23)5 + 211 = 215 + 211
= 211.24 + 211.1 = 211.(16 + 1) = 211 . 17 (chia hết cho 17)
692 - 69.5 = 69.69 - 69.5
= 69.(69 - 5) = 69.64 = 69.2. 32 (chia hết cho 32)
87 - 218 = (23)7 - 218 = 221 - 218
= 218. 23 - 218.1 = 218.(8 - 1)
= 218 . 7 = 217 . 2 . 7 = 217 . 14 (chia hết cho 14)
chứng tỏ rằng :
8^5 + 2^11 chia hết cho 17
69 ^2 - 69.5 chia hết cho 32
8^7 - 2^18 chia hết cho 14
Ta có: 8^5 + 2^11 = ( 2^3 )^5 + 2^11 = 2^15 + 2^11 = 2^11 * 2^4 + 2^11 * 1 = 2^11 * ( 16 + 1 ) = 2^11 * 17 chia hết cho 17
=> 8^5 + 2^11 chia hết cho 17
69^2 - 69 * 5 = 69 * 69 - 69 * 5 = 69 * ( 69 - 5 ) = 69 * 64 = 69 * 2 * 32 = 138 * 32 chia hết cho 32
=> 69^2 - 69 * 5 chia hết cho 32
8^7 - 2^18 = ( 2^3 )^7 - 2^18 = 2^21 - 2^18 = 2^18 * 2^3 - 2^18 * 1 = 2^18 * ( 8 - 1 ) = 2^17 * 2 * 7 = 2^17 * 14 chia hết cho 14
=> 8^7 - 2^18 chia hết cho 14
chứng tỏ rằng:
8 mũ 5+ 2 mũ 11 chia hết cho 17
69 mũ 2 - 69.5 chia hết cho 32
8 mũ 7 - 2 mũ 19 chia hết cho 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
1) chứng tỏ rằng
a) 85+211 chia hết cho 17
b) 692-69.5 chia hết cho 32
c) 87-218 chia hết cho 14
a) 85+211 = ( 23)5+ 211= 215 + 211 = 211 ( 24+1) = 211(16+1) =( 211. 17 ) chia hết cho 17 => ........ ( kết luận )
b) 692-69.5 = 69 ( 69-5) = 69. 64 = (69.2.32) chia hết cho 32 => ....
c) 87-218 = (23)7 - 218 = 221-218 = 218( 23-1) = 217.2.7 = (217 .14) chia hết cho 14 => ...
a)
\(8^5=2^{15}\)
=> \(2^{11}+2^{15}\)
= \(2^{11}.1+2^{11}.2^4\)
= \(2^{11}.\left(1+2^4\right)\)
= \(2^{11}.17⋮17\)
Vậy ta có điều phải chứng minh !!!
b)
\(69^2-69.5\)
= \(69.69-69.5\)
= \(69.\left(69-5\right)\)
= \(69.64⋮32\)( Vì 64 \(⋮\)32 )
c)
\(8^7=2^{21}\)
=> \(2^{21}-2^{18}\)
= \(2^{17}.2^4-2^{17}.2\)
= \(2^{17}.\left(2^4-2\right)\)
= \(2^{17}.14⋮14\)
Vậy ta có điều phải chứng minh !!!
Ủng hộ mik nhá ^_^"
Chứng tỏ rằng :
a, 85 + 211 chia hết cho 17.
b, 692 – 69.5 chia hết cho 32.
c, 87 – 218 chia hết cho 14.
a, 85 + 211 = (23)5 + 211 = 215 + 211 = 211 (24 + 1) = 211 . 17
=> đpcm
b, 692 - 69 . 5 = 69 (69 - 5) = 69 . 64 = 69 . 32 . 2
=> đpcm
c, 87 - 218 luôn chia hết cho 2 (1)
87 - 218 = 221 - 218 = 218 (23 - 1) = 218 . 7
=> 218 . 7 chia hết cho 7 (2)
có 1 và 2, 2 và 7 nguyên tố cùng nhau
=> đpcm
chúc may mắn
Chứng tỏ rằng :
a, 85 + 211 chia hết cho 17.
b, 692 – 69.5 chia hết cho 32.
c, 87 – 218 chia hết cho 14.
Chứng tỏ rằng
a, 8^5+2^11 chia hết cho 17 b, 69^2-69*5 chia hết cho 32
c, 8^7-2^18 chia hết cho 14
a) chứng tỏ rằng 85 +2 11 chia hết cho 17
b)chứng tỏ rằng 8 7-2 18chia hết cho 14
c) chứng tỏ rằng 79 2+79.11 chia hết cho 30
d)chứng tỏ rằng 69 2-69.5 chia hết cho 32
B=3+3 3+3 5+.....+3 1991. chứng minh rằng B chia hết cho 13 và 41
11 n+2+12 20+1 chia hết cho 133
10 28 +8 chia hết cho 72
a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17
chứng tỏ rằng :
a . 85 + 211 chia hết cho 17
b . 692 - 69.5 chia hết cho 32
c . 87 - 218 chia hết cho 14
a)\(\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)\)
\(=2^{11}.17\)chia hết cho 17
b)\(=69\left(69-5\right)=69.64\)mà 64chia hết cho32 nen 69.64 chia hết cho 32
c)\(=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{17}\left(2^5-2\right)=2^{17}.28\)mà 28chia hết cho 14 nên \(2^{17}.28\)chia hết cho 14