Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng an
Xem chi tiết

loading...

loading...

loading...

Hoàng an
Xem chi tiết

loading...

loading...

Anh Phạm Phương
Xem chi tiết
Yến Mạc
Xem chi tiết
Trần Thùy Dương
12 tháng 6 2018 lúc 16:44

Bạn tự vẽ hình nha ^^

a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có 

\(AB=EB\left(GT\right)\)(1)

\(\widehat{BAD}=\widehat{BED}=90^o\)(2)

\(BD:\)Cạnh chung (3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )

b) 

---Theo đề bài ta có :

\(AB=EB\left(GT\right)\)(1)

và  \(\widehat{ABC}=60^o\left(gt\right)\)(2)

Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều                   (đpcm)

--- Vì  \(\Delta ABE\)đều

\(\Rightarrow AB=BE=AE\)

Mà \(AB=6cm\)(gt)

...\(AE=EC\)

\(\Rightarrow EC=6cm\)

mà \(BE=6cm\)

Có  \(EC+BE=BC\)

\(\Rightarrow6+6=12cm\)

Vậy BC =12cm

Nguyễn Mai Linh
1 tháng 3 2021 lúc 21:06

Bạn tự vẽ hình nha ^^

a)--- Xét ΔABD và ▲ EBDcó 

AB=EB(GT)     (1)

ˆBAD=ˆBED=90o    (2)

BD:Cạnh chung (3)

Từ (1) ;(2) và (3)

ΔABD=ΔEBD (c.g.c)

b) 

---Theo đề bài ta có : AB=EB(GT)(1)

và  ˆABC=60o(gt)              (2)

Từ (1)và (2)➸ΔABE đều               (đpcm)

--- Vì  ΔABE đều nên:

AB=BE=AE

Mà AB=6cm(gt)

...AE=EC

⇒EC=6cm

mà BE=6cm

Có  EC+BE=BC

6+6=12cm

Vậy BC =12cm

Phan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 20:58

1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra:BA=BD

2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC
Ta có: BA+AE=BE

BD+DC=BC

mà BA=BD

và AE=DC

nên BE=BC

hay ΔBEC cân tại B

3: Xét ΔBEC có BA/AE=BD/DC

nên AD//EC

TM SÁNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 21:34

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: DA=DH

Xét ΔADE vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADE}=\widehat{HDC}\)

Do đó: ΔADE=ΔHDC

Suy ra: AE=HC

Xét ΔBEC có BA/AE=BH/HC

nên AH//EC

Tình Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 3 2021 lúc 22:11

a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)

hay BC=8(cm)

Vậy: BC=8cm

Hoàng Tuấn
Xem chi tiết
nguyễn an phát
23 tháng 3 2021 lúc 16:20

A B C D H

D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!

Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+62

BC2=36+36

BC2=72

⇒BC=\(\sqrt{72}\)

xét hai tam giác vuông AND và HBD có:

\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )

BD là cạnh chung

⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)

⇒AB=HB(2 cạnh tương ứng)

⇒ΔABH là tam giác cân

gọi D' là giao điểm của AH và BD ta có:

xét ΔABD' và ΔHBD' có:

\(\widehat{DBH}\) =\(\widehat{DBA}\)  (BC là tia phân giác của\(\widehat{HBA}\) )

AB=HB(ΔABH cân tại B)

\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)

⇒ ΔABD' = ΔHBD' (G-C-G)

⇒HD'=AD'(2 cạnh tương ứng)

vì  ΔABD' = ΔHBD' 

⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)

Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)

Từ (1)và(2) ⇒ D'B⊥AH(3)

Từ (1)và(3) ⇒BD là đường trung trực của AH

 

 

HOÀNG XUÂN TUẤN
Xem chi tiết