So sánh:
\(\left(-\frac{1}{64}\right)^5\) và \(\left(-\frac{1}{4}\right)^7\)
So sánh:
\(\left(-\frac{1}{64}\right)^5\) và \(\left(-\frac{1}{4}\right)^7\)
\(\left(\frac{-1}{64}\right)^5=\left(\left(\frac{-1}{4}\right)^3\right)^5=\left(\frac{-1}{4}\right)^{15}\)
\(\left(\frac{-1}{4}\right)^{15}< \left(\frac{-1}{4}\right)^7\Leftrightarrow\left(\frac{-1}{64}\right)^5< \left(\frac{-1}{4}\right)^7\)
So sánh x và y biết:
\(x=\left(1-\frac{1}{\sqrt{4}}\right).\left(1-\frac{1}{\sqrt{16}}\right).\left(1-\frac{1}{\sqrt{36}}\right).\left(1-\frac{1}{\sqrt{64}}\right).\left(1-\frac{1}{\sqrt{100}}\right)\)và y = \(\sqrt{0,1}\)
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)và B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
Ta có
\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\) \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\) \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{4968}{2225}\) \(\Leftrightarrow B=\frac{25}{8}\)
\(\Leftrightarrow A=\frac{39744}{17800}\) \(\Leftrightarrow B=\frac{55625}{17800}\)
Ta có: 39744<55625
\(\Rightarrow A< B\)
Vậy A<B
Cho A = \(\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\); B = \(\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
A =\(\frac{\left(\frac{17}{5}+\frac{1}{5}\right).\frac{2}{5}}{\left(\frac{38}{7}-\frac{9}{4}\right).\frac{56}{267}}\)
A=\(\frac{36}{25}\).\(\frac{3}{2}\)=\(\frac{54}{25}\)=2,16
B=\(\frac{1,2:\left(\frac{6}{5}-\frac{5}{4}\right)}{0,32+\frac{2}{25}}\)=-24.\(\frac{5}{2}\)=-60
vì 2,16 > -60 Vậy A>B
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
so sánh :
C=\(\frac{5^4.20^4}{25^5.4^5}\) và D=\(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
E=\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)và F=\(2:\left(\frac{1}{2}-\frac{2}{3}\right)^3\)
I=\(\frac{2}{3}+\frac{1}{3}:\left(\frac{-8}{25}\right)\)và H=\(\frac{5}{11}.\frac{4}{11}+\frac{7}{11}.\frac{5}{11}-\frac{2}{3}\)
Cho \(A=\frac{\left(3\frac{2}{15}+\frac{1}{15}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)
\(B=\frac{1;2:\left(1\frac{1}{5}:1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
So sánh A và B
Cho x = 3,7.So sánh :
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
và B = [5x]
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
Phạm Thị Thùy Linh+๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ):Cả 2 bạn đều nhầm chỗ \(\left[a\right]\) rồi nha.\(\left[a\right]\) tức là phần nguyên của a nghĩa là số nguyên lớn nhất ko vượt quá a.
\(A=\left[x\right]+\left[x+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
\(=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(=3+3+4+4+4\)
\(=18\)
\(B=\left[5x\right]\)
\(B=\left[18,5\right]\)
\(=18\)
Vậy \(A=B\left(=18\right)\)
So sánh các số x và y, nếu
a)\(x=\sqrt{961}-\left(\frac{1}{\sqrt{6}}-1\right)\)và \(y=\sqrt{1089}-\left(\frac{1}{\sqrt{7}}+1\right)\)
b) \(\sqrt{0,01}+\sqrt{0,04}+\sqrt{0,09}+\sqrt{0,16}+...+\sqrt{0,81}\)và \(y=\sqrt{20+0,25}\)
c) \(x=\left(1-\frac{1}{\sqrt{4}}\right).\left(1-\frac{1}{\sqrt{16}}\right).\left(1-\frac{1}{\sqrt{36}}\right).\left(1-\frac{1}{\sqrt{64}}\right).\left(1-\frac{1}{\sqrt{100}}\right)\)và\(y=\sqrt{0,1}\)