Rút gọn biểu thức ngắn nhất có thể:
n.(n+1).(n+2)+(n+3).(n+4)
xn-1 ( x+y ) -y ( xn-1 + yn-1 )
Hãy rút gọn biểu thức sau ngắn gọn nhất có thể
xn-1 ( x+y ) -y ( xn-1 + yn-1 )
Hãy rút gọn biểu thức sau ngắn gọn nhất có thể
rút gọn biểu thức 1/1×2+1/2×3+1/3×4+1/(n-1)×n
A=2^n-1+2*2^n+3-8*2^n-4-16*2^n rút gọn biểu thức
A=\(2^{n-1}+2.2^n+3-8.2^{n-4}-16.2^n=\)\(\frac{2^n}{2}+2.2^n-8.\frac{2^n}{2^4}-16.2^n+3\)
=\(2^n\left(\frac{1}{2}+2-\frac{8}{16}-16\right)+3\)=\(-14.2^n+3\)
rút gọn biểu thức sau
a) -3(n-1)+4(2+n)
b) 4(n-2)-3(5-n)
c)7(8-n)+8(n-5)
d) -7(2n-1)-3(n-2)
Cho biểu thức:
N=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a) Tìm điều kiện xác định của biểu thức N. Rút gọn N
b) Tìm x để biểu thức N đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................
Rút gọn các biểu thức:
a)3^n+3^n+2
b)1.5*2^n-2^n-1
a) \(3^n+3^{n+2}=3^n.\left(1+3^2\right)=3^n.\left(1+9\right)=10.3^n\)
b) \(1,5.2^n-2^{n-1}=1,5.2^{1+n-1}-2^{n-1}=1,5.2.2^{n-1}-2^{n-1}\)
\(=3.2^{n-1}-2^{n-1}=2^{n-1}.\left(3-1\right)=2^{n-1}.2=2^n\)
Cảm ơn bạn nhiều lắm!!!
Cho biểu thức N = \(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\dfrac{4\sqrt{x}}{3}\)\
a) Rút gọn biểu thức N
b) Tìm x để N = \(\dfrac{8}{9}\)
Rút gọn biểu thức
n^4+4/n^2-2n+2