Chứng minh:
A=1+4+4 mũ 2 +...+4 mũ 58+4 mũ 59 chia hết cho 85
Cho E=1 + 4 + 4 mũ 2 + 4 mũ 3 +....+4 mũ 58 + 4 mũ 59.Hãy chứng minh rằng E chia hết cho 5 và E chia hết cho 21
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
A=1+4+4 mũ 2+...+4 mũ 58+4 mũ 59 chia hết cho 5 và 21
giúp minh với : )
a)Chứng minh:A=2 mũ 1+2 mũ 2+2 mũ 3+2 mũ4+...+2 mũ 2010 chia hết cho 3 và 7
b)Chứng minh:B=3 mũ 1+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 2010 chia hết cho 4 và 13
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008
cho A=4 mũ 0+4 mũ 1+4 mũ 2+4 mũ 3+........+4 mũ 97.Chứng tỏ rằng A chia hết cho 85
Chứng minh:A=2 mũ 1 + 2 mũ 2+ 2 mũ 3 + 2 mũ 4+....+2 mũ 2010 chia hết cho 3; và 7
Chứng minh rằng: 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 59 + 2 mũ 60 chia hết cho 3.
\(2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{59}\right)\\ =3\left(2+2^3+...+2^{59}\right)⋮3\)
a, A =2 + 22 +2 3+ 2 4 + ..... + 2 19 + 2 20
A =(2 + 22 )+(2 3 + 2 4 )+ ..... + (2 19 + 2 20)
A =2 (1 + 2 )+2 3(1 + 2 )+ ..... +2 19 (1 + 2)
A =2 .3+2 3.3+ ..... +2 19 .3 = 3.(2 +2 3+ ..... +219)
Vì 3 chia hết cho 3 => 3.(2 +2 3+ ..... +219) chia hết cho 3=> A chia hết cho 3
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.