Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Linh
Xem chi tiết
Hằng Ngốk
Xem chi tiết
Từ Quang Minh
Xem chi tiết
Nguyen Nhu Nam
14 tháng 7 2016 lúc 20:55

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

phạm xuân an
Xem chi tiết
Đặng Thị Thanh Tâm
Xem chi tiết
Từ Quang Minh
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 7 2016 lúc 10:38

Đặt  \(n^4+n^3+n^2=a^2\left(a\in N\right)\)

Ta có : \(n^4-2n^3+n^2< a^2< n^4+2n^3+n^2\) 

\(\Leftrightarrow\left(n^2-n\right)^2< a^2< \left(n^2+n\right)^2\)\(\Rightarrow n^2-n< a< n^2+n\)

Mặt khác, ta lại có : \(n^2-n< n^2< n^2+n\) \(\Rightarrow a=n^2\Leftrightarrow a^2=n^4\)

\(\Leftrightarrow n^4+n^3+n^2=n^4\Leftrightarrow n^2\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(\text{nhận}\right)\\n=-1\left(\text{loại}\right)\end{cases}}\)

Vậy n = 0 thoả mãn đề bài.

Phan Thị Hà Vy
Xem chi tiết
aaaa
Xem chi tiết
Ngô Linh
Xem chi tiết
Vũ Việt Hà
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Thành Nam Vũ
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4