Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Phương Nhung
Xem chi tiết
Nguyễn Thị Tố Nữ
5 tháng 10 2015 lúc 19:32

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.

 

Hoàng Lê Minh
Xem chi tiết
Hoàng Lê Minh
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết

|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1

Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:

M = (1 + a)(1 + b)(1 + c)

M = (1 + b + a + ab)(1 + c)

M = 1 + b + a + ab + c + bc + ac + abc

M = 1 + ( a + b + c) + (ab + bc + ac) + abc

M = 1 + 2 + (-5) +  3

M = (1+2+3) - 5

M = 1

quan ho
Xem chi tiết
Nguyễn Thị Mai Linh
Xem chi tiết
Lê Trung Thông
Xem chi tiết
Trần Nhừ
Xem chi tiết
quynh anh
11 tháng 8 2016 lúc 19:38

 nghe nhe',bai nay de thui ma. 
ta xet ve trai a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1) 
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b) 
thay vao(2) ta dc 
=3abc 
vay la xong 
ket luan ve trai bang ve phai 

k cho mk nha

Trần Nhừ
11 tháng 8 2016 lúc 19:48

Mơn bạn 

đã đúng 

Minh Ngọc Aurora
Xem chi tiết
Pham Van Hung
27 tháng 11 2018 lúc 21:22

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)