đoạn thẳng nối trung điểm 2 đường chéo của 1 hình thang =nửa hiệu 2 cạnh đáy
chứng minh rằng trong hình thang mà hai đáy không = , đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu cạnh đáy
Chứng minh đoạn thẳng nối trung điểm 2 đường chéo của 1 hình thang có hai cạnh đáy không bằng nhau thì song song với 2 đáy và bằng nửa hiệu độ dài 2 đáy
CMR: đường trung bình của hình thang đi qua trung điểm 2 đường chéo và đoạn thẳng nối trung điểm 2 đường chéo = nửa hiệu hai đáy
Cho hình thang ABCD. Chứng minh
A. đoạn thẳng nối trung điểm hai cạnh bên và đoạn thẳng nối trung điểm hai đường chéo cùng nằm trên một đường thẳng
B. Đoạn thẳng nối trung điểm 2 cạnh bên bằng nửa tổng hai đáy. Đoạn thẳng nối trung điểm 2 đường chéo bằng tổng hai đáy
Chứng minh rằng trong hình thang mà 2 đáy không bằng nhau đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu 2 đáy
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
chứng minh rằng trong 1 hình thang đoạn thẳng nối trung điểm của 2 đường chéo thì song song với 2 đáy và bằng nửa hiệu 2 đáy
CHứng minh rằng trong hình thang mà 2 đáy ko bằng nhau , đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu 2 đáy
CMR trong hình thang có 2 đáy không bằng nhau, đoạn thẳng nối trung điểm 2 đường chéo song song và = nửa hiệu hai đáy
Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
Chứng minh rằng trong hình thang mà 2 đáy không bằng nhau đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu 2 đáy.
Nhanh mk tk!
Giả sử hình thang ABCD có AB // CD, AB < CD.
I, K lần lượt là trung điểm hai đường chéo BD, AC
Gọi F là trung điểm của BC
Trong tam giác ACB ta có:
K là trung điểm của cạnh AC
F là trung điểm của cạnh BC
Nên KF là đường trung bình của ∆ BDC
⇒ KF // AB và KF=\(\frac{1}{2}\)ABKF=\(\frac{1}{2}\)AB (tính chất đường trung bình của tam giác)
Trong tam giác BDC ta có:
I là trung điểm của cạnh BD
F là trung điểm của cạnh BC
Nên IF là đường trung bình của ∆ BDC
⇒ IF // CD và IF=\(\frac{1}{2}\)CDIF=\(\frac{1}{2}\)CD (tính chất đường trung bình của tam giác)
FK // AB mà AB // CD nên FK // CD
FI // CD (chứng minh trên)
Suy ra hai đường thẳng FI và FA trùng nhau.
⇒ I, K, F thẳng hàng, AB < CD ⇒ FK < FI nên K nằm giữa I và F
IF = IK + KF
\(\eqalign{ & \Rightarrow IK = IF - KF \cr & = {1 \over 2}CD - {1 \over 2}AB = {{CD - AB} \over 2} \cr}\)
Ta có hình vẽ ( mang tính tương đối )
Gọi ,M,E,F lần lượt là trung điểm của các đoạn AD ; BD ; AC
Xét \(\Delta ABD\)có M,E lần lượt là trung điểm của AD và BD nên ME là đường trung bình của tam giác ADB
Do đó \(ME//AB;ME=\frac{1}{2}AB\)(1)
Xét \(\Delta ADC\)có M;F lần lưượt là trung điểm của AD;AC nên MF là đường trung bình của tam giác ADC
Do đó \(MF=\frac{DC}{2};MF//DC\)mà \(AB//DC\)(vì tứ giác ABCD là hình thang ) nên \(MF//DC\)(2)
Từ (1) và (2) ta có ba điểm M;E;F thẳng hàng ( theo tiên đề Ơ-clit) và
\(FE=FM-EM=\frac{1}{2}\left(CD-AB\right)\)
Vậy trong hình thang mà 2 đáy không bằng nhau đoạn thẳng nối trung điểm của 2 đường chéo bằng nửa hiệu 2 đáy.