tinh bang cach hop ly
Tử số: 1+2+3+...+200
Mẫu số: 6+8+10+..+34
tinh gia tri bieu thuc sau bang cach hop ly
1-6+11-16+21+...+91-96+101
1-6+11-16+21-...+91-96+101 =(1-6)+(11-16)+(21-26)+....+(91-96)+101 =(-5)+(-5)+.....+(-5)+101 (có 10 số (-5) ) =(-5).10+101 =-50+101 =51
\(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)
\(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}=\frac{36.\left(\frac{1}{9}-\frac{5}{6}-4\right)}{36.\left(\frac{7}{12}-\frac{1}{36}-10\right)}\)
\(=\frac{4-6.5-36.4}{3.7-1-36.10}\)
\(=\frac{4-30-144}{21-1-360}\)
\(=\frac{-26-144}{20-360}=\frac{-170}{-340}=\frac{1}{2}\)
\(\frac{\frac{4}{36}-\frac{30}{36}-\frac{144}{36}}{\frac{21}{36}-\frac{1}{36}-\frac{360}{36}}=\frac{\frac{-170}{36}}{\frac{-340}{36}}=\frac{-170}{36}:\frac{-340}{36}=\frac{-170}{36}.\frac{36}{-340}=\frac{-170}{-340}=\frac{1}{2}\)
\(\frac{\frac{15}{8}-\frac{15}{6}-\frac{15}{32}+\frac{15}{64}}{3-\frac{3}{2}-\frac{3}{4}+\frac{3}{8}}\)
tinh bang cach hop ly
21x35x3x25x7
\(21\cdot35\cdot3\cdot25\cdot7\)
\(=21\cdot3\cdot7\cdot35\cdot25\)
\(=21(3\cdot7)\cdot35\cdot25\)
\(=21\cdot21\cdot35\cdot25\)
\(=21^2\cdot875=385875\)
Nghĩ sao không có số nào tròn để tính hợp lí -_-
thuc hien phep tinh bang cach hop ly(neu co the) a)248:{[(368+232):120-3]+122}+2011 b) -243+(319:314+28:25)
a) 248: {[( 368+232): 120-3]+122}+2011
=248:{[600:120-3]+122}+2011
=> 248:{ 2+122}+2011
=> 248: 124+2011
=> 2+2011
=> 2013
Tinh bang cach hop ly
895,72 +402,68-634,87=
895,72 + 402,68 - 634,87 =
= 1298,4 - 634,87
=663,53
tk nha
Tinh bang cach hop ly
\(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\) \(\frac{-28}{31}+\frac{-11}{17}+\frac{-1}{5}\)
tinh tong sau bang cach hop ly
a = 2+2^2+2^3+2^4+...+2^100
mong moi nguoi giup do
Ta có:
A=2+2^2+2^3+....+2^99+2^100
=>2A=2^2+2^3+2^4+....+2^100+2^101
=>2A-A=(2^2+2^3+2^4+....+2^101)-(2+2^2+2^3+....+2^99)
Phá ngoặc ra, ta được:
A=2^101-2.
P/s:Nếu bạn có máy tính cầm tay, bấm 2^100-2 bằng bao nhiêu nhé !!!Chúc bạn học tốt.
Ta có :
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{100}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
a, \(\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)