Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Mai Chi
Xem chi tiết
Uriki Kairi
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
ngdinhthaihoang123
Xem chi tiết
NTH
15 tháng 9 2017 lúc 12:36

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

Huỳnh Quang Sang
11 tháng 7 2019 lúc 17:02

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

Bi Pham
1 tháng 9 2020 lúc 21:22

Ta có:a/b=a.(b+n)

                =a.b+a.n/b.(b+n)

a+n/b+n=(a+n).b/(b+n).b

             =a.b+b.n/b.(b+n)

-->a/b<a+n/b+n

       

Khách vãng lai đã xóa
ngdinhthaihoang
Xem chi tiết
Akai Haruma
31 tháng 5 lúc 0:48

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

Phạm Phương Uyên
Xem chi tiết
Trần Trọng Nghĩa
Xem chi tiết
Akai Haruma
30 tháng 3 2023 lúc 18:52

Lời giải:

$\frac{a+n}{b+n}-\frac{a}{b}=\frac{b(a+n)-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}$

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}>0$

$\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}<0$

$\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}=0$

$\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

ngdinhthaihoang123
Xem chi tiết
Đức Thuận Nguyễn
Xem chi tiết
Lãnh Hạ Thiên Băng
13 tháng 10 2016 lúc 18:31

ta có: (a+n).b=ab+bn

(b+n).a=ab+an

TH1:nếu a>b

=>an>bn

=>ab+bn<ab+an

=>(a+n).b<(b+n).a

=>(a+n)/(b+n)<a/b

TH2 nếu a=b

=>an=bn

=>an+ab=ab+bn

=>a(b+n)=b(a+n)

=>(a+n)/(b+n)=a/b

TH3: nếu a<b

=>an+ab<an+bn

=>a(b+n)<b(a+n)

=>(a+n)/(b+n)>a/b

Vậy .........